toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cinzano, P.; Falchi, F. url  openurl
  Title A portable wide-field instrument for mapping night sky brightness automatically Type Journal Article
  Year 2003 Publication Memorie della Società Astronomica Italiana Abbreviated Journal Mem. S.A. It.  
  Volume 74 Issue 2 Pages 458-459  
  Keywords Instrumentation; all-sky; photometry; sky brightness  
  Abstract We present a portable automatic instrument for monitoring night sky brightness and atmospherical transparency in astronomical photometrical bands. Main requirements were: fast and automatic coverage of the entire sky, lightness, transportability and quick set-up in order to take measurements from more sites in the same night, easily available commercial components and software to be reproduced by any interested institution, included amateurs astronomers groups.  
  Address Istituto di Scienza e Tecnologia dell’Inquinamento Luminoso, Thiene, Italy  
  Corporate Author Thesis  
  Publisher Società Astronomica Italiana Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1824-016X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial (down) 2243  
Permanent link to this record
 

 
Author Zhang, K.; Zhong, X.; Zhang, G.; Li, D.; Su, Z.; Meng, Y.; Jiang, Y. url  doi
openurl 
  Title Thermal Stability Optimization of the Luojia 1-01 Nighttime Light Remote-Sensing Camera's Principal Distance Type Journal Article
  Year 2019 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 19 Issue 5 Pages 990  
  Keywords Instrumentation; Luojia 1-01; nighttime light remote-sensing camera; principal distance; optical-passive athermal design; thermal stability  
  Abstract The instability of the principal distance of the nighttime light remote-sensing camera of the Luojia 1-01 satellite directly affects the geometric accuracy of images, consequently affecting the results of analysis of nighttime light remote-sensing data. Based on the theory of optical passive athermal design, a mathematical model of optical-passive athermal design for principal distance stabilization is established. Positive and negative lenses of different materials and the mechanical structures of different materials are matched to optimize the optical system. According to the index requirements of the Luojia 1-01 camera, an image-telecentric optical system was designed under the guidance of the established mathematical model. In the temperature range of -20 degrees C to +60 degrees C, the principal distance of the system changes from -0.01 mum to +0.28 mum. After on-orbit testing, the geometric accuracy of the designed nighttime light remote-sensing camera is better than 0.20 pixels and less than index requirement of 0.3 pixels, which indicating that the principal distance maintains good stability on-orbit and meets the application requirements of nighttime light remote sensing.  
  Address School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China. jiangyh@whu.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30813556 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2238  
Permanent link to this record
 

 
Author Su, Z.; Zhong, X.; Zhang, G.; Li, Y.; He, X.; Wang, Q.; Wei, Z.; He, C.; Li, D. url  doi
openurl 
  Title High Sensitive Night-time Light Imaging Camera Design and In-orbit Test of Luojia1-01 Satellite Type Journal Article
  Year 2019 Publication Sensors Abbreviated Journal Sensors  
  Volume 19 Issue 4 Pages 797  
  Keywords Remote Sensing; Instrumentation  
  Abstract Luojia1-01 satellite is the first scientific experimental satellite applied for night-time light remote sensing data acquisition, and the payload is an optical camera with high sensitivity, high radiation measurement accuracy and stable elements of interior orientation. At the same time, a special shaped hood is designed, which significantly improved the ability of the camera to suppress stray light. Camera electronics adopts the integrated design of focal plane and imaging processing, which greatly reduces the volume and weight of the system. In this paper, the design of the optical camera is summarized, and the results of in-orbit imaging performance tests are analyzed. The results show that the dynamic modulation transfer function (MTF) of the camera is better than 0.17, and the SNR is better than 35 dB under the condition of 10 lx illuminance and 0.3 reflectivity and all indicators meet the design requirements. The data obtained have been widely applied in many fields such as the process of urbanization, light pollution analysis, marine fisheries detection and military.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2215  
Permanent link to this record
 

 
Author Fiorentin, P.; Boscaro, F. url  doi
openurl 
  Title A method for measuring the light output of video advertising reproduced by LED billboards Type Journal Article
  Year 2019 Publication Measurement Abbreviated Journal Measurement  
  Volume 138 Issue Pages 25-33  
  Keywords Lighting; Energy; Instrumentation; Planning; Light-emitting diode displays; Photometry; Video recording; Image analysis; CCD image sensors; Luminance; Glare  
  Abstract Improving knowledge of the light output of digital billboards is important to better assess their effect on driver distraction when they are installed along roads. In this work the emission of an LED based billboard is measured when playing advertising video-clips. In particular the average and the maximum values of the luminance are evaluated. The same video-clips are also analyzed when shown on an LCD monitor, aiming at separating the variability of the videos and of the playing device. The results allow to evaluate an utilization factor of the billboard: the videos have an average luminance around 11% and a peak luminance of 35% of the maximum luminance obtainable from the billboard. The power consumption of the billboard is measured, aside the photometric analysis. The luminance of the device are found linearly dependent on both the power and the effective current absorbed by the device from the grid, with a discrepancy within 6%. It could be a useful information for billboard manufacturers to qualify their product when they do not own photometric instruments.  
  Address Department of Industrial Engineering, University of Padova, Padova, Italy; pietro.fiorentin(at)unipd.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0263-2241 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2214  
Permanent link to this record
 

 
Author Tauc, M.J.; Fristrup, K.M.; Repasky, K.S.; Shaw, J.A. url  doi
openurl 
  Title Field demonstration of a wing-beat modulation lidar for the 3D mapping of flying insects Type Journal Article
  Year 2019 Publication OSA Continuum Abbreviated Journal OSA Continuum  
  Volume 2 Issue 2 Pages 332  
  Keywords Instrumentation; Animals  
  Abstract We describe a wing-beat modulation lidar system designed for the 3D mapping of flying insects in ecological or entomological studies. To better understand the signals from this instrument, we analyzed simulated signals to identify how they were affected by various imperfections, such as variations in the spacing and amplitude of each individual wing-beat reflection. In addition, a radiometric model was used to estimate signal-to-noise ratio to gain insight into the relationships between the optical system design and insect parameters (e.g., wing size, reflectivity, or diffusivity).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2578-7519 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2209  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: