|   | 
Details
   web
Records
Author Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F.
Title Red is the new black: how the colour of urban skyglow varies with cloud cover Type Journal Article
Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society
Volume 425 Issue 1 Pages 701-708
Keywords Keywords: skyglow; radiative transfer; atmospheric effects; instrumentation: detectors; light pollution
Abstract The development of street lamps based on solid-state lighting technology is likely to introduce a major change in the colour of urban skyglow (one form of light pollution). We demonstrate the need for long-term monitoring of this trend by reviewing the influences it is likely to have on disparate fields. We describe a prototype detector which is able to monitor these changes, and could be produced at a cost low enough to allow extremely widespread use. Using the detector, we observed the differences in skyglow radiance in red, green and blue channels. We find that clouds increase the radiance of red light by a factor of 17.6, which is much larger than that for blue (7.1). We also find that the gradual decrease in sky radiance observed on clear nights in Berlin appears to be most pronounced at longer wavelengths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 272
Permanent link to this record
 

 
Author Wahl, F.; Kantermann, T.; Amft, O.
Title How much Light do you get? Estimating Daily Light Exposure using Smartphones Type Conference Article
Year 2014 Publication Proceedings of the 2014 ACM International Symposium on Wearable Computers Abbreviated Journal Proc. of the 2014 ACM International Symposium on Wearable Computers
Volume n/a Issue n/a Pages 43-46
Keywords Instrumentation; light exposure; context inference, light intensity; light intake; circadian clock; circadian rhythm; mobile sensing
Abstract We present an approach to estimate a persons light exposure using smartphones. We used web-sourced weather reports combined with smartphone light sensor data, time of day, and indoor/outdoor information, to estimate illuminance around the user throughout a day. Since light dominates every human’s circadian rhythm and influences the sleep-wake cycle, we developed a smartphone-based system that does not re- quire additional sensors for illuminance estimation. To evaluate our approach, we conducted a free-living study with 12 users, each carrying a smartphone, a head-mounted light reference sensor, and a wrist-worn light sensing device for six consecutive days. Estimated light values were compared to the head-mounted reference, the wrist-worn device and a mean value estimate. Our results show that illuminance could be estimated at less than 20% error for all study participants, outperforming the wrist-worn device. In 9 out of 12 participants the estimation deviated less than 10% from the reference measurements.
Address ACTLab, Chair of Sensor Technology, University of Passau (florian.wahl@uni-passau.de)
Corporate Author Thesis
Publisher ACM Place of Publication Editor
Language English Summary Language English Original Title
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1206
Permanent link to this record
 

 
Author Gaston, K.J.
Title Sustainability: A green light for efficiency Type Journal Article
Year 2013 Publication Nature Abbreviated Journal Nature
Volume 497 Issue 7451 Pages 560-561
Keywords Editorial; Animals; Atmosphere/chemistry; Carbon Dioxide/analysis; Circadian Rhythm/physiology; Conservation of Energy Resources/economics/*methods/*trends; Global Warming/prevention & control; Humans; Lighting/*economics/instrumentation/statistics & numerical data/*trends; Public Health
Abstract
Address Environment and Sustainability Institute, University of Exeter, Penryn, UK. k.j.gaston@exeter.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23719447 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 459
Permanent link to this record
 

 
Author Miller, S.; Straka, W.; Mills, S.; Elvidge, C.; Lee, T.; Solbrig, J.; Walther, A.; Heidinger, A.; Weiss, S.
Title Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band Type Journal Article
Year 2013 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 5 Issue 12 Pages 6717-6766
Keywords Instrumentation; satellite imagery; nighttime visible/near-infrared; moonlight
Abstract Daytime measurements of reflected sunlight in the visible spectrum have been a staple of Earth-viewing radiometers since the advent of the environmental satellite platform. At night, these same optical-spectrum sensors have traditionally been limited to thermal infrared emission, which contains relatively poor information content for many important weather and climate parameters. These deficiencies have limited our ability to characterize the full diurnal behavior and processes of parameters relevant to improved monitoring, understanding and modeling of weather and climate processes. Visible-spectrum light information does exist during the nighttime hours, originating from a wide variety of sources, but its detection requires specialized technology. Such measurements have existed, in a limited way, on USA Department of Defense satellites, but the Suomi National Polar-orbiting Partnership (NPP) satellite, which carries a new Day/Night Band (DNB) radiometer, offers the first quantitative measurements of nocturnal visible and near-infrared light. Here, we demonstrate the expanded potential for nocturnal low-light visible applications enabled by the DNB. Via a combination of terrestrial and extraterrestrial light sources, such observations are always available—expanding many current existing applications while enabling entirely new capabilities. These novel low-light measurements open doors to a wealth of new interdisciplinary research topics while lighting a pathway toward the optimized design of follow-on satellite based low light visible sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 468
Permanent link to this record
 

 
Author Kruse, F.A.; Elvidge, C.D.
Title Characterizing urban light sources using imaging spectrometry Type Journal Article
Year 2011 Publication Proceedings of the Joint Urban Remote Sensing Event 2011, April 13-11, Munich, Germany Abbreviated Journal
Volume Issue Pages 149 - 152
Keywords Instrumentation
Abstract Remote mapping of night lights has been used for decades for mapping urbanization and the global distribution of human activity. Most of this has been accomplished using remote sensing data from the Defense Meteorological Satellite Program (DMSP). The coarse spatial and spectral resolution of DMSP, however, has precluded discrimination of lighting types or spectral characteristics. Recent demonstrations using photography from the International Space Station and airborne multispectral simulations demonstrate significant potential, but high-spectral-resolution field and laboratory measurements indicate that these methods do not take full advantage of the spectral information available. This research demonstrates the use of imaging spectrometer data to identify, characterize, and map urban lighting based on spectral emission lines unique to specific lighting types. ProSpecTIR imaging spectrometer data were analyzed to extract spectral features and these were compared to spectral library measurements on a pixel-by-pixel basis, resulting in a detailed spatial map showing different lighting types. The nature and distribution of lights can be used as a surrogate for measurement of urban development.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 469
Permanent link to this record