toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jechow, A.; Kyba, C.; Hölker, F. url  doi
openurl 
  Title (up) Beyond All-Sky: Assessing Ecological Light Pollution Using Multi-Spectral Full-Sphere Fisheye Lens Imaging Type Journal Article
  Year 2019 Publication Journal of Imaging Abbreviated Journal J. Imaging  
  Volume 5 Issue 4 Pages 46  
  Keywords Instrumentation; Skyglow  
  Abstract Artificial light at night is a novel anthropogenic stressor. The resulting ecological light pollution affects a wide breadth of biological systems on many spatio-temporal scales, from individual organisms to communities and ecosystems. However, a widely-applicable measurement method for nocturnal light providing spatially resolved full-spectrum radiance over the full solid angle is still missing. Here, we explain the first step to fill this gap, by using a commercial digital camera with a fisheye lens to acquire vertical plane multi-spectral (RGB) images covering the full solid angle. We explain the technical and practical procedure and software to process luminance and correlated color temperature maps and derive illuminance. We discuss advantages and limitations and present data from different night-time lighting situations. The method provides a comprehensive way to characterize nocturnal light in the context of ecological light pollution. It is affordable, fast, mobile, robust, and widely-applicable by non-experts for field work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2313-433X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2327  
Permanent link to this record
 

 
Author Fiorentin, P.; Bertolo, A.; Cavazzani, S.; Ortolani, S. url  doi
openurl 
  Title (up) Calibration of digital compact cameras for sky quality measures Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages  
  Keywords Skyglow; Instrumentation  
  Abstract This work presents the possibility of using the extremely popular compact digital cameras of smartphones or action cameras to perform sky photometry. The newest generation of these devices allows to save raw images. They are not as good as digital single-lens reflex camera, in particular in terms of sensitivity, noise and pixel depth (10 bit versus 12 bit or more), but they have the advantage of being extremely widespread on the population and relatively cheap. These economical digital compact cameras work with an electronic shutter, it overcomes the consumption of mechanics and allows to gather images for long time. The work uses a simple calibration method to transfer raw data from the proprietary RGB color space to the standard CIE 1931 color space. It allows the measurement of sky luminance in cd m−2 with an expected uncertainty of about 20%. Furthermore, the colorimetric calibration allows to know the correlated color temperature of a portion of the sky, it can help the identification of the kind of polluting sources. Aiming at better clarifying the performances of calibrated digital compact cameras, a comparison with a calibrated DSLR camera is presented in outdoor situations showing a good agreement both for luminance and color temperature measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3063  
Permanent link to this record
 

 
Author Bará, S. url  doi
openurl 
  Title (up) Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed? Type Journal Article
  Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume 473 Issue 3 Pages 4164-4173  
  Keywords Instrumentation; atmospheric effects; light pollution; numerical methods; photometry  
  Abstract A recurring question arises when trying to characterize, by means of measurements or theoretical calculations, the zenithal night sky brightness throughout a large territory: how many samples per square kilometre are needed? The optimum sampling distance should allow reconstructing, with sufficient accuracy, the continuous zenithal brightness map across the whole region, whilst at the same time avoiding unnecessary and redundant oversampling. This paper attempts to provide some tentative answers to this issue, using two complementary tools: the luminance structure function and the Nyquist–Shannon spatial sampling theorem. The analysis of several regions of the world, based on the data from the New world atlas of artificial night sky brightness, suggests that, as a rule of thumb, about one measurement per square kilometre could be sufficient for determining the zenithal night sky brightness of artificial origin at any point in a region to within ±0.1 magV arcsec–2 (in the root-mean-square sense) of its true value in the Johnson–Cousins V band. The exact reconstruction of the zenithal night sky brightness maps from samples taken at the Nyquist rate seems to be considerably more demanding.  
  Address 1Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher Oxford Academic Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2164  
Permanent link to this record
 

 
Author Kruse, F.A.; Elvidge, C.D. url  openurl
  Title (up) Characterizing urban light sources using imaging spectrometry Type Journal Article
  Year 2011 Publication Proceedings of the Joint Urban Remote Sensing Event 2011, April 13-11, Munich, Germany Abbreviated Journal  
  Volume Issue Pages 149 - 152  
  Keywords Instrumentation  
  Abstract Remote mapping of night lights has been used for decades for mapping urbanization and the global distribution of human activity. Most of this has been accomplished using remote sensing data from the Defense Meteorological Satellite Program (DMSP). The coarse spatial and spectral resolution of DMSP, however, has precluded discrimination of lighting types or spectral characteristics. Recent demonstrations using photography from the International Space Station and airborne multispectral simulations demonstrate significant potential, but high-spectral-resolution field and laboratory measurements indicate that these methods do not take full advantage of the spectral information available. This research demonstrates the use of imaging spectrometer data to identify, characterize, and map urban lighting based on spectral emission lines unique to specific lighting types. ProSpecTIR imaging spectrometer data were analyzed to extract spectral features and these were compared to spectral library measurements on a pixel-by-pixel basis, resulting in a detailed spatial map showing different lighting types. The nature and distribution of lights can be used as a surrogate for measurement of urban development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 469  
Permanent link to this record
 

 
Author Joachim, L.; Storch, T. url  doi
openurl 
  Title (up) Cloud Detection For Night-Time Panchromatic Visible And Near-Infrared Satellite Imagery Type Journal Article
  Year 2020 Publication ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences Abbreviated Journal ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.  
  Volume V-2-2020 Issue Pages 853-860  
  Keywords Instrumentation; Remote Sensing  
  Abstract Cloud detection for night-time panchromatic visible and near-infrared (VNIR) satellite imagery is typically performed based on synchronized observations in the thermal infrared (TIR). To be independent of TIR and to improve existing algorithms, we realize and analyze cloud detection based on VNIR only, here NPP/VIIRS/DNB observations. Using Random Forest for classifying cloud vs. clear and focusing on urban areas, we illustrate the importance of features describing a) the scattering by clouds especially over urban areas with their inhomogeneous light emissions and b) the normalized differences between Earth’s surface and cloud albedo especially in presence of Moon illumination. The analyses substantiate the influences of a) the training site and scene selections and b) the consideration of single scene or multi-temporal scene features on the results for the test sites. As test sites, diverse urban areas and the challenging land covers ocean, desert, and snow are considered. Accuracies of up to 85% are achieved for urban test sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-9050 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3064  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: