toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alamús, R.; Bará, S.; Corbera, J.; Escofet, J.; Palà , V.; Pipia, L.; Tardà, A. url  doi
openurl 
  Title (up) Ground-based hyperspectral analysis of the urban nightscape Type Journal Article
  Year 2017 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing  
  Volume 124 Issue Pages 16-26  
  Keywords Instrumentation; Remote Sensing  
  Abstract Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-2716 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1613  
Permanent link to this record
 

 
Author Su, Z.; Zhong, X.; Zhang, G.; Li, Y.; He, X.; Wang, Q.; Wei, Z.; He, C.; Li, D. url  doi
openurl 
  Title (up) High Sensitive Night-time Light Imaging Camera Design and In-orbit Test of Luojia1-01 Satellite Type Journal Article
  Year 2019 Publication Sensors Abbreviated Journal Sensors  
  Volume 19 Issue 4 Pages 797  
  Keywords Remote Sensing; Instrumentation  
  Abstract Luojia1-01 satellite is the first scientific experimental satellite applied for night-time light remote sensing data acquisition, and the payload is an optical camera with high sensitivity, high radiation measurement accuracy and stable elements of interior orientation. At the same time, a special shaped hood is designed, which significantly improved the ability of the camera to suppress stray light. Camera electronics adopts the integrated design of focal plane and imaging processing, which greatly reduces the volume and weight of the system. In this paper, the design of the optical camera is summarized, and the results of in-orbit imaging performance tests are analyzed. The results show that the dynamic modulation transfer function (MTF) of the camera is better than 0.17, and the SNR is better than 35 dB under the condition of 10 lx illuminance and 0.3 reflectivity and all indicators meet the design requirements. The data obtained have been widely applied in many fields such as the process of urbanization, light pollution analysis, marine fisheries detection and military.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2215  
Permanent link to this record
 

 
Author Wahl, F.; Kantermann, T.; Amft, O. url  doi
openurl 
  Title (up) How much Light do you get? Estimating Daily Light Exposure using Smartphones Type Conference Article
  Year 2014 Publication Proceedings of the 2014 ACM International Symposium on Wearable Computers Abbreviated Journal Proc. of the 2014 ACM International Symposium on Wearable Computers  
  Volume n/a Issue n/a Pages 43-46  
  Keywords Instrumentation; light exposure; context inference, light intensity; light intake; circadian clock; circadian rhythm; mobile sensing  
  Abstract We present an approach to estimate a persons light exposure using smartphones. We used web-sourced weather reports combined with smartphone light sensor data, time of day, and indoor/outdoor information, to estimate illuminance around the user throughout a day. Since light dominates every human’s circadian rhythm and influences the sleep-wake cycle, we developed a smartphone-based system that does not re- quire additional sensors for illuminance estimation. To evaluate our approach, we conducted a free-living study with 12 users, each carrying a smartphone, a head-mounted light reference sensor, and a wrist-worn light sensing device for six consecutive days. Estimated light values were compared to the head-mounted reference, the wrist-worn device and a mean value estimate. Our results show that illuminance could be estimated at less than 20% error for all study participants, outperforming the wrist-worn device. In 9 out of 12 participants the estimation deviated less than 10% from the reference measurements.  
  Address ACTLab, Chair of Sensor Technology, University of Passau (florian.wahl@uni-passau.de)  
  Corporate Author Thesis  
  Publisher ACM Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1206  
Permanent link to this record
 

 
Author Kruse, F.A.; Elvidge, C.D. url  doi
openurl 
  Title (up) Identifying and mapping night lights using imaging spectrometry Type Journal Article
  Year 2011 Publication Proceedings of Aerospace Conference, 2011 IEEE, March 5-11 2011. Abbreviated Journal  
  Volume Issue Pages 1 - 6  
  Keywords Instrumentation  
  Abstract Remote mapping of night lights using the Defense Meteorological Satellite Program (DMSP) has been used for decades to inventory the global distribution of human activity. ©± The coarse spatial and spectral resolution of DMSP, however, has precluded discrimination of lighting types or spectral characteristics. Recent demonstrations using photography from the International Space Station and airborne multispectral simulations demonstrate significant potential, but high-spectral-resolution field and laboratory measurements indicate that these methods do not take full advantage of the spectral information available. This research demonstrates the use of imaging spectrometer data to identify, characterize, and map urban lighting based on comparison to a lights spectral library. The library provides information about spectral emission lines unique to specific lighting types. ProSpecTIR-VS imaging spectrometer data of Las Vegas, Nevada were analyzed to extract spectral features and these were compared to the spectral library measurements on a pixel-by-pixel basis, resulting in a detailed spatial map showing different lighting types. The nature and distribution of lights can be used as a surrogate for characterization of urban settings, and measurement of urban development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 470  
Permanent link to this record
 

 
Author Yao, Q.; Wang, H.; Uttley, J.; Zhuang, X. url  doi
openurl 
  Title (up) Illuminance Reconstruction of Road Lighting in Urban Areas for Efficient and Healthy Lighting Performance Evaluation Type Journal Article
  Year 2018 Publication Applied Sciences Abbreviated Journal Applied Sciences  
  Volume 8 Issue 9 Pages 1646  
  Keywords Instrumentation; Lighting; Planning  
  Abstract Big lighting data are required for evaluation of lighting performance and impacts on human beings, environment, and ecology for smart urban lighting. However, traditional approaches of measuring road lighting cannot achieve this aim. We propose a rule-of-thumb model approach based on some feature points to reconstruct road lighting in urban areas. We validated the reconstructed illuminance with both software simulated and real road lighting scenes, and the average error is between 6 and 19%. This precision is acceptable in practical applications. Using this approach, we reconstructed the illuminance of three real road lighting environments in a block and further estimated the mesopic luminance and melanopic illuminance performance. In the future, by virtue of Geographic Information System technology, the approach may provide big lighting data for evaluation and analysis, and help build smarter urban lighting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2003  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: