|   | 
Details
   web
Records
Author Gaston, K.J.
Title (up) Sustainability: A green light for efficiency Type Journal Article
Year 2013 Publication Nature Abbreviated Journal Nature
Volume 497 Issue 7451 Pages 560-561
Keywords Editorial; Animals; Atmosphere/chemistry; Carbon Dioxide/analysis; Circadian Rhythm/physiology; Conservation of Energy Resources/economics/*methods/*trends; Global Warming/prevention & control; Humans; Lighting/*economics/instrumentation/statistics & numerical data/*trends; Public Health
Abstract
Address Environment and Sustainability Institute, University of Exeter, Penryn, UK. k.j.gaston@exeter.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23719447 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 459
Permanent link to this record
 

 
Author Schnitt, S.; Ruhtz, T.; Fischer, J.; Hölker, F.; Kyba, C.C.M.
Title (up) Temperature stability of the sky quality meter Type Journal Article
Year 2013 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)
Volume 13 Issue 9 Pages 12166-12174
Keywords *Artifacts; Atmosphere/*analysis; Environmental Monitoring/*instrumentation; Equipment Design; Equipment Failure Analysis; Photometry/*instrumentation; Reproducibility of Results; Sensitivity and Specificity; Temperature; *Transducers; Sky Quality Meter; SQM
Abstract The stability of radiance measurements taken by the Sky Quality Meter (SQM)was tested under rapidly changing temperature conditions during exposure to a stable light field in the laboratory. The reported radiance was found to be negatively correlated with temperature, but remained within 7% of the initial reported radiance over a temperature range of -15 degrees C to 35 degrees C, and during temperature changes of -33 degrees C/h and +70 degrees C/h.This is smaller than the manufacturer's quoted unit-to-unit systematic uncertainty of 10%,indicating that the temperature compensation of the SQM is adequate under expected outdoor operating conditions.
Address Institute for Space Sciences, Freie Universitat Berlin, Carl-Heinrich-Becker-Weg 6-10, Berlin 12165, Germany. christopher.kyba@wew.fu-berlin.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:24030682; PMCID:PMC3821345 Approved no
Call Number IDA @ john @ Serial 194
Permanent link to this record
 

 
Author Meier; J.M.
Title (up) Temporal Profiles of Urban Lighting: Proposal for a research design and first results from three sites in Berlin Type Journal Article
Year 2018 Publication International Journal of Sustainable Lighting Abbreviated Journal
Volume 20 Issue Pages 11-28
Keywords Instrumentation; Lighting; Society
Abstract This paper presents and experimentally applies a research design for studying the temporal dimension of outdoor artificial illumination in complex lightscapes such as those of urban centres. It contributes to filling the gap between analyses of high-resolution aerial imagery, which provide detailed but static information on the spatial composition of lightscapes, and existing methods for studying their dynamics, which measure changes at high levels of aggregation. The research design adopts a small-scale, detailed approach by using close-range time-lapse videos to document the on/off patterns of individual light sources as the night progresses. It provides a framework and vocabulary for discrete and comparative analyses of the identified temporal profiles of lighting. This allows for pinpointing similarities and differences among the dynamics of different places, nights or categories of lighting. Its application to three case studies in Berlin indicate that switch-on and switch-off times are clustered, resulting in static and dynamic phases of the night. Midnight is a temporal fault-line, after which full illumination ends as portions of the illumination are extinguished. Switch-off times and -rates differ among the three lightscapes and, especially, among four functional types of lighting that were differentiated: infrastructural and commercial units largely remain on all night, while substantial portions of architectural and indoor lighting are switched off, though at fairly different times. Such findings are valuable for studies based on data collected at specific points in time (aerial imagery, measurements), for informing and monitoring temporally oriented lighting policies, and for understanding urban dynamics at large.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1901
Permanent link to this record
 

 
Author Kolláth, Z.; Száz, D.; Tong, K.P.; Kolláth, K.
Title (up) The Colour of the Night Sky Type Journal Article
Year 2020 Publication Journal of Imaging Abbreviated Journal J. Imaging
Volume 6 Issue 9 Pages 90
Keywords Skyglow; Natural light; Instrumentation
Abstract The measurement of night sky quality has become an important task in night sky conservation. Modern measurement techniques involve mainly a calibrated digital camera or a spectroradiometer. However, panchromatic devices are still prevalent to this day, even in the absence of determining the spectral information of the night sky. In the case of multispectral measurements, colour information is currently presented in multiple ways. One of the most frequently used metrics is correlated colour temperature (CCT), which is not without its limitation for the purpose of describing especially the colour of natural night sky. Moreover, visually displaying the colour of the night sky in a quantitatively meaningful way has not attracted sufficient attention in the community of astronomy and light pollution research—most photographs of the night sky are post-processed in a way for aesthetic attractiveness rather than accurate representation of the night sky. The spectrum of the natural night sky varies in a wide range depending on solar activity and atmospheric properties. The most noticeable variation in the visible range is the variation of the atomic emission lines, primarily the green oxygen and orange sodium emission. Based on the accepted models of night sky emission, we created a random spectral database which represents the possible range of night sky radiance distribution. We used this spectral database as a learning set, to create a colour transformation between different colour spaces. The spectral sensitivity of some digital cameras is also used to determine an optimal transformation matrix from camera defined coordinates to real colours. The theoretical predictions were extended with actual spectral measurements in order to test the models and check the local constituents of night sky radiance. Here, we present an extended modelling of night sky colour and recommendations of its consistent measurement, as well as methods of visualising the colour of night sky in a consistent way, namely using the false colour enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2313-433X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3120
Permanent link to this record
 

 
Author Bouroussis, C.A.; Topalis, F.V.
Title (up) The effect of the spectral response of measurement instruments in the assessment of night sky brightness Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 216 Issue Pages 56-69
Keywords Skyglow; Instrumentation
Abstract This paper deals with the errors and uncertainties in skyglow measurements caused by the variation of sky's spectrum. It considers the theoretical spectral response of common instruments that are used for light pollution assessment. Various types of light sources were used in this investigation. This study calculates the spectral mismatch errors and the corresponding correction factors for each combination of instrument and light source. The calculation method is described and the results are presented in multiple figures. Calculated data show a big variation in potential errors that can be introduced when comparing readings of diverse instruments without considering the sky spectrum variation. This makes the spectral data of the sky a mandatory input to the dark sky assessment. Useful conclusions, related to instruments with better or worse behaviour, are derived from the calculations. The paper also includes suggestions on how to conduct multi-instrument measurements with or without spectral data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1908
Permanent link to this record