toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, K.; Zhong, X.; Zhang, G.; Li, D.; Su, Z.; Meng, Y.; Jiang, Y. url  doi
openurl 
  Title Thermal Stability Optimization of the Luojia 1-01 Nighttime Light Remote-Sensing Camera's Principal Distance Type (up) Journal Article
  Year 2019 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 19 Issue 5 Pages 990  
  Keywords Instrumentation; Luojia 1-01; nighttime light remote-sensing camera; principal distance; optical-passive athermal design; thermal stability  
  Abstract The instability of the principal distance of the nighttime light remote-sensing camera of the Luojia 1-01 satellite directly affects the geometric accuracy of images, consequently affecting the results of analysis of nighttime light remote-sensing data. Based on the theory of optical passive athermal design, a mathematical model of optical-passive athermal design for principal distance stabilization is established. Positive and negative lenses of different materials and the mechanical structures of different materials are matched to optimize the optical system. According to the index requirements of the Luojia 1-01 camera, an image-telecentric optical system was designed under the guidance of the established mathematical model. In the temperature range of -20 degrees C to +60 degrees C, the principal distance of the system changes from -0.01 mum to +0.28 mum. After on-orbit testing, the geometric accuracy of the designed nighttime light remote-sensing camera is better than 0.20 pixels and less than index requirement of 0.3 pixels, which indicating that the principal distance maintains good stability on-orbit and meets the application requirements of nighttime light remote sensing.  
  Address School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China. jiangyh@whu.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30813556 Approved no  
  Call Number GFZ @ kyba @ Serial 2238  
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F. url  openurl
  Title A portable wide-field instrument for mapping night sky brightness automatically Type (up) Journal Article
  Year 2003 Publication Memorie della Società Astronomica Italiana Abbreviated Journal Mem. S.A. It.  
  Volume 74 Issue 2 Pages 458-459  
  Keywords Instrumentation; all-sky; photometry; sky brightness  
  Abstract We present a portable automatic instrument for monitoring night sky brightness and atmospherical transparency in astronomical photometrical bands. Main requirements were: fast and automatic coverage of the entire sky, lightness, transportability and quick set-up in order to take measurements from more sites in the same night, easily available commercial components and software to be reproduced by any interested institution, included amateurs astronomers groups.  
  Address Istituto di Scienza e Tecnologia dell’Inquinamento Luminoso, Thiene, Italy  
  Corporate Author Thesis  
  Publisher Società Astronomica Italiana Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1824-016X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2243  
Permanent link to this record
 

 
Author Bará, S.; Tapia, C.; Zamorano, J. url  doi
openurl 
  Title Absolute Radiometric Calibration of TESS-W and SQM Night Sky Brightness Sensors Type (up) Journal Article
  Year 2019 Publication Sensors Abbreviated Journal Sensors  
  Volume 19 Issue 6 Pages 1336  
  Keywords Instrumentation; calibration; SQM; TESS; photometer; sky brightness  
  Abstract We develop a general optical model and describe the absolute radiometric calibration of the readings provided by two widely-used night sky brightness sensors based on irradiance-to-frequency conversion. The calibration involves the precise determination of the overall spectral sensitivity of the devices and also the constant G relating the output frequency of the light-to-frequency converter chip to the actual band-weighted and field-of-view averaged spectral radiance incident on the detector (brightness). From these parameters, we show how to define a rigorous astronomical absolute photometric system in which the sensor measurements can be reported in units of magnitudes per square arcsecond with precise physical meaning.  
  Address Departmento Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2263  
Permanent link to this record
 

 
Author Sánchez de Miguel, A.; Bará, S.; Aubé, M.; Cardiel, N.; Tapia, C.E.; Zamorano, J.; Gaston, K.J. url  doi
openurl 
  Title Evaluating Human Photoreceptoral Inputs from Night-Time Lights Using RGB Imaging Photometry Type (up) Journal Article
  Year 2019 Publication Journal of Imaging Abbreviated Journal J. Imaging  
  Volume 5 Issue 4 Pages 49  
  Keywords Human Health; Remote Sensing; Instrumentation  
  Abstract Night-time lights interact with human physiology through different pathways starting at the retinal layers of the eye; from the signals provided by the rods; the S-, L- and M-cones; and the intrinsically photosensitive retinal ganglion cells (ipRGC). These individual photic channels combine in complex ways to modulate important physiological processes, among them the daily entrainment of the neural master oscillator that regulates circadian rhythms. Evaluating the relative excitation of each type of photoreceptor generally requires full knowledge of the spectral power distribution of the incoming light, information that is not easily available in many practical applications. One such instance is wide area sensing of public outdoor lighting; present-day radiometers onboard Earth-orbiting platforms with sufficient nighttime sensitivity are generally panchromatic and lack the required spectral discrimination capacity. In this paper, we show that RGB imagery acquired with off-the-shelf digital single-lens reflex cameras (DSLR) can be a useful tool to evaluate, with reasonable accuracy and high angular resolution, the photoreceptoral inputs associated with a wide range of lamp technologies. The method is based on linear regressions of these inputs against optimum combinations of the associated R, G, and B signals, built for a large set of artificial light sources by means of synthetic photometry. Given the widespread use of RGB imaging devices, this approach is expected to facilitate the monitoring of the physiological effects of light pollution, from ground and space alike, using standard imaging technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2313-433X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2294  
Permanent link to this record
 

 
Author Windle, A. E., Hooley, D. S., & Johnston, D. W. url  doi
openurl 
  Title Robotic Vehicles Enable High-Resolution Light Pollution Sampling of Sea Turtle Nesting Beaches Type (up) Journal Article
  Year 2018 Publication Frontiers in Marine Science Abbreviated Journal  
  Volume 5 Issue 493 Pages  
  Keywords Instrumentation; Animals; Skyglow  
  Abstract Nesting sea turtles appear to avoid brightly lit beaches and often turn back to sea prematurely when exposed to artificial light. Observations and experiments have noted that nesting turtles prefer darker areas where buildings and high dunes act as light barriers. As a result, sea turtles often nest on darker beaches, creating spatial concentrations of nests. Artificial nighttime light, or light pollution, has been quantified using a variety of methods. However, it has proven challenging to make accurate measurements of ambient light at fine scales and on smaller nesting beaches. Additionally, light has traditionally been measured from stationary tripods perpendicular to beach vegetation, disregarding the point of view of a nesting sea turtle. In the present study, nighttime ambient light conditions were assessed on three beaches in central North Carolina: a developed coastline of a barrier island, a nearby State Park on the same barrier island comprised of protected and undeveloped land, and a completely uninhabited wilderness on an adjacent barrier island in the Cape Lookout National Seashore. Using an autonomous terrestrial rover, high resolution light measurements (mag/arcsec2) were collected every minute with two ambient light sensors along transects on each beach. Spatial comparisons between ambient light and nesting density at and between these locations reveal that highest densities of nests occur in regions with lowest light levels, supporting the hypothesis that light pollution from coastal development may influence turtle nesting distribution. These results can be used to support ongoing management strategies to mitigate this pressing conservation issue.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2315  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: