toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. url  doi
openurl 
  Title Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution Type Journal Article
  Year 2018 Publication Sensors Abbreviated Journal Sensors  
  Volume 18 Issue 9 Pages 2900  
  Keywords Remote Sensing; Instrumentation  
  Abstract The successful launch of Luojia 1-01 complements the existing nighttime light data with a high spatial resolution of 130 m. This paper is the first study to assess the potential of using Luojia 1-01 nighttime light imagery for investigating artificial light pollution. Eight Luojia 1-01 images were selected to conduct geometric correction. Then, the ability of Luojia 1-01 to detect artificial light pollution was assessed from three aspects, including the comparison between Luojia 1-01 and the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS), the source of artificial light pollution and the patterns of urban light pollution. Moreover, the advantages and limitations of Luojia 1-01 were discussed. The results showed the following: (1) Luojia 1-01 can detect a higher dynamic range and capture the finer spatial details of artificial nighttime light. (2) The averages of the artificial light brightness were different between various land use types. The brightness of the artificial light pollution of airports, streets, and commercial services is high, while dark areas include farmland and rivers. (3) The light pollution patterns of four cities decreased away from the urban core and the total light pollution is highly related to the economic development. Our findings confirm that Luojia 1-01 can be effectively used to investigate artificial light pollution. Some limitations of Luojia 1-01, including its spectral range, radiometric calibration and the effects of clouds and moonlight, should be researched in future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1997  
Permanent link to this record
 

 
Author den Outer, P.; Lolkema, D.; Haaima, M.; van der Hoff, R.; Spoelstra, H.; Schmidt, W. url  doi
openurl 
  Title Stability of the Nine Sky Quality Meters in the Dutch Night Sky Brightness Monitoring Network Type Journal Article
  Year 2015 Publication Sensors Abbreviated Journal Sensors  
  Volume 15 Issue 4 Pages 9466-9480  
  Keywords Instrumentation  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1157  
Permanent link to this record
 

 
Author Bará, S. url  doi
openurl 
  Title Variations on a classical theme: On the formal relationship between magnitudes per square arcsecond and luminance Type Journal Article
  Year 2017 Publication International Journal of Sustainable Lighting Abbreviated Journal Intl J of Sustainable Lighting  
  Volume 19 Issue 2 Pages 77  
  Keywords Instrumentation; skyglow; luminance; magnitude; sky brigthness; photometry  
  Abstract The formal link between magnitudes per square arcsecond and luminance is discussed in this paper. Directly related to the human visual system, luminance is defined in terms of the spectral radiance of the source, weighted by the CIE V(l) luminous efficiency function, and scaled by the 683 lm/W luminous efficacy constant. In consequence, any exact and spectrum-independent relationship between luminance and magnitudes per square arcsecond requires that the last ones be measured precisely in the CIE V(l) band. The luminance value corresponding to mVC=0 (zero-point of the CIE V(l) magnitude scale) depends on the reference source chosen for the definition of the magnitude system. Using absolute AB magnitudes, the zero point luminance of the CIE V(l) photometric band is 10.96 x 104 cd·m-2.  
  Address Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2586-1247 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2162  
Permanent link to this record
 

 
Author Lee, B., Lee, Y., Kim, D., & Kim, S. url  doi
openurl 
  Title Correction of Lunar Irradiation Effect and Change Detection Using Suomi-NPP Data Type Journal Article
  Year 2019 Publication Korean Journal of Remote Sensing Abbreviated Journal  
  Volume 35 Issue 2 Pages 265-278  
  Keywords Instrumentation  
  Abstract Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data help to enable rapid emergency responses through detection of the artificial and natural disasters occurring at night. The DNB data without correction of lunar irradiance effect distributed by Korea Ocean Science Center (KOSC) has advantage for rapid change detection because of direct receiving. In this study, radiance differences according to the phase of the moon was analyzed for urban and mountain areas in Korean Peninsula using the DNB data directly receiving to KOSC. Lunar irradiance correction algorithm was proposed for the change detection. Relative correction was performed by regression analysis between the selected pixels considering the land cover classification in the reference DNB image during the new moon and the input DNB image. As a result of daily difference image analysis, the brightness value change in urban area and mountain area was

±

30

radiance and below

±

1

radiance respectively. The object based change detection was performed after the extraction of the main object of interest based on the average image of time series data in order to reduce the matching and geometric error between DNB images. The changes in brightness occurring in mountainous areas were effectively detected after the calibration of lunar irradiance effect, and it showed that the developed technology could be used for real time change detection.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2720  
Permanent link to this record
 

 
Author Müller, A.; Wuchterl, G.; Sarazin, M. url  openurl
  Title Measuring the Night Sky Brightness with the Lightmeter. Type Journal Article
  Year 2011 Publication ReVMexAA Abbreviated Journal  
  Volume 41 Issue Pages 46–49  
  Keywords Instrumentation; instrumentation: photometers; light pollution; methods: data analysis; methods: observational; site testing  
  Abstract We present a newly developed, low-cost photometer for long-term monitoring of the night sky brightness and

light pollution on Earth. The so-called Lightmeter is an as far as possible stand-alone operational, fully

weatherproof, and maintenance-free device. It provides a high data sampling rate of up to 1 Hz as well as a

superb sensitivity covering the whole brightness range down to the darkest night time conditions. The excellent

performance of the Lightmeter allows a continuously monitoring of the night sky brightness and opens a wide

range of applications at an observatory site like determining overall sky conditions in real time, cloud detection

and estimation of their velocity, measuring relative changes in extinction as well as the detection of long term

trends in brightness caused by an increase of artificial illumination. We will present first results of measurements

taken at Cerro Armazones, one of the best obser
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 471  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: