toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Allik, T.; Ramboyong, L.; Roberts, M.; Walters, M.; Soyka, T.; Dixon, R.; Cho, J. url  doi
openurl 
  Title Enhanced oil spill detection sensors in low-light environments Type Conference Article
  Year 2016 Publication Proc. SPIE 9827, Ocean Sensing and Monitoring VIII, 98270B (May 17, 2016) Abbreviated Journal Proc. SPIE 9827  
  Volume Issue Pages  
  Keywords Instrumentation; Sensors; Cameras; Long wavelength infrared; Short wave infrared radiation; Spectroscopy; Calibration; Remote sensing; Water; Near infrared; Night vision  
  Abstract Although advances have been made in oil spill remote detection, many electro-optic sensors do not provide real-time images, do not work well under degraded visual environments, nor provide a measure of extreme oil thickness in marine environments. A joint program now exists between BSEE and NVESD that addresses these capability gaps in remote sensing of oil spills. Laboratory experiments, calibration techniques, and field tests were performed at Fort Belvoir, Virginia; Santa Barbara, California; and the Ohmsett Test Facility in Leonardo, New Jersey. Weathered crude oils were studied spectroscopically and characterized with LWIR, and low-light-level visible/NIR, and SWIR cameras. We designed and fabricated an oil emulsion thickness calibration cell for spectroscopic analysis and ground truth, field measurements. Digital night vision cameras provided real-time, wide-dynamic-range imagery, and were able to detect and recognize oil from full sun to partial moon light. The LWIR camera provided quantitative oil analysis (identification) for >1 mm thick crude oils both day and night. Two filtered, co-registered, SWIR cameras were used to determine whether oil thickness could be measured in real time. Spectroscopic results revealed that oil emulsions vary with location and weathered state and some oils (e.g., ANS and Santa Barbara seeps) do not show the spectral rich features from archived Deep Water Horizon hyperspectral data. Multi-sensor imagery collected during the 2015 USCG Airborne Oil Spill Remote Sensing and Reporting Exercise and the design of a compact, multiband imager are discussed.  
  Address Active EO Inc.  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1475  
Permanent link to this record
 

 
Author Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F. url  doi
openurl 
  Title Red is the new black: how the colour of urban skyglow varies with cloud cover Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society  
  Volume 425 Issue 1 Pages 701-708  
  Keywords Keywords: skyglow; radiative transfer; atmospheric effects; instrumentation: detectors; light pollution  
  Abstract The development of street lamps based on solid-state lighting technology is likely to introduce a major change in the colour of urban skyglow (one form of light pollution). We demonstrate the need for long-term monitoring of this trend by reviewing the influences it is likely to have on disparate fields. We describe a prototype detector which is able to monitor these changes, and could be produced at a cost low enough to allow extremely widespread use. Using the detector, we observed the differences in skyglow radiance in red, green and blue channels. We find that clouds increase the radiance of red light by a factor of 17.6, which is much larger than that for blue (7.1). We also find that the gradual decrease in sky radiance observed on clear nights in Berlin appears to be most pronounced at longer wavelengths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 272  
Permanent link to this record
 

 
Author Rabaza, O.; Aznar-Dols, F.; Mercado-Vargas, M.; Espin-Estrella, A. url  doi
openurl 
  Title A new method of measuring and monitoring light pollution in the night sky Type Journal Article
  Year 2014 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology  
  Volume 46 Issue 1 Pages 5-19  
  Keywords Instrumentation; all-sky; measurement; modeling; monitoring  
  Abstract This paper describes a method of measuring and monitoring light pollution in the night sky. This method is capable of instantly quantifying the levels of artificial radiance and monochromatic luminance of the sky glow by means of a system that includes an all-sky camera as well as several interference filters. The calibration is done with an integrating sphere where the measurement pattern used is obtained from the light reflected from the inner wall of the sphere which comes from radiation emitted by a calibration lamp with a known luminous flux. The inner wall of this sphere is a Lambertian surface, which ensures that the light reflected or falling on it is uniformly dispersed in all directions (i.e. the surface luminance is isotropic).  
  Address Ovidio Rabaza Castillo, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingenieria Civil, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain E-mail: ovidio(at)ugr.es  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1347  
Permanent link to this record
 

 
Author Alamús, R.; Bará, S.; Corbera, J.; Escofet, J.; Palà , V.; Pipia, L.; Tardà, A. url  doi
openurl 
  Title Ground-based hyperspectral analysis of the urban nightscape Type Journal Article
  Year 2017 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing  
  Volume 124 Issue Pages 16-26  
  Keywords Instrumentation; Remote Sensing  
  Abstract Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-2716 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1613  
Permanent link to this record
 

 
Author Voigt, L.P.; Reynolds, K.; Mehryar, M.; Chan, W.S.; Kostelecky, N.; Pastores, S.M.; Halpern, N.A. url  doi
openurl 
  Title Monitoring sound and light continuously in an intensive care unit patient room: A pilot study Type Journal Article
  Year 2016 Publication Journal of Critical Care Abbreviated Journal Journal of Critical Care  
  Volume 38 Issue 21 Pages 5952-5961  
  Keywords Instrumentation; Human Health  
  Abstract Purpose

To determine the feasibility of continuous recording of sound and light in the intensive care unit (ICU).

Materials and Methods

Four one-hour baseline scenarios in an empty ICU patient room by day and night (doors open or closed and maximal or minimal lighting) and two daytime scenarios simulating a stable and unstable patient (quiet or loud devices and staff) were conducted. Sound and light levels were continuously recorded using a commercially available multisensor monitor and transmitted via the hospital's network to a cloud-based data storage and management system.

Results

The empty ICU room was loud with similar mean sound levels for the day and night simulations of 45–46 dBA. Mean levels for maximal lighting during day and night ranged from 1306–1812 lux and mean levels for minimum lighting were 1–3 lux. The mean sound levels for the stable and unstable patient simulations were 61 and 81 dBA, respectively. The mean light levels were 349 lux for the stable patient and 1947 lux for the unstable patient.

Conclusions

Combined sound and light can be continuously and easily monitored in the ICU setting. Incorporating sound and light monitors in ICU rooms may promote an enhanced patient and staff centered healing environment.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-9441 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1614  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: