|   | 
Details
   web
Records
Author Gaston, K.J.
Title Sustainability: A green light for efficiency Type Journal Article
Year 2013 Publication Nature Abbreviated Journal Nature
Volume (down) 497 Issue 7451 Pages 560-561
Keywords Editorial; Animals; Atmosphere/chemistry; Carbon Dioxide/analysis; Circadian Rhythm/physiology; Conservation of Energy Resources/economics/*methods/*trends; Global Warming/prevention & control; Humans; Lighting/*economics/instrumentation/statistics & numerical data/*trends; Public Health
Abstract
Address Environment and Sustainability Institute, University of Exeter, Penryn, UK. k.j.gaston@exeter.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23719447 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 459
Permanent link to this record
 

 
Author Bará, S.
Title Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed? Type Journal Article
Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume (down) 473 Issue 3 Pages 4164-4173
Keywords Instrumentation; atmospheric effects; light pollution; numerical methods; photometry
Abstract A recurring question arises when trying to characterize, by means of measurements or theoretical calculations, the zenithal night sky brightness throughout a large territory: how many samples per square kilometre are needed? The optimum sampling distance should allow reconstructing, with sufficient accuracy, the continuous zenithal brightness map across the whole region, whilst at the same time avoiding unnecessary and redundant oversampling. This paper attempts to provide some tentative answers to this issue, using two complementary tools: the luminance structure function and the Nyquist–Shannon spatial sampling theorem. The analysis of several regions of the world, based on the data from the New world atlas of artificial night sky brightness, suggests that, as a rule of thumb, about one measurement per square kilometre could be sufficient for determining the zenithal night sky brightness of artificial origin at any point in a region to within ±0.1 magV arcsec–2 (in the root-mean-square sense) of its true value in the Johnson–Cousins V band. The exact reconstruction of the zenithal night sky brightness maps from samples taken at the Nyquist rate seems to be considerably more demanding.
Address 1Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Oxford Academic Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2164
Permanent link to this record
 

 
Author Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F.
Title Red is the new black: how the colour of urban skyglow varies with cloud cover Type Journal Article
Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society
Volume (down) 425 Issue 1 Pages 701-708
Keywords Keywords: skyglow; radiative transfer; atmospheric effects; instrumentation: detectors; light pollution
Abstract The development of street lamps based on solid-state lighting technology is likely to introduce a major change in the colour of urban skyglow (one form of light pollution). We demonstrate the need for long-term monitoring of this trend by reviewing the influences it is likely to have on disparate fields. We describe a prototype detector which is able to monitor these changes, and could be produced at a cost low enough to allow extremely widespread use. Using the detector, we observed the differences in skyglow radiance in red, green and blue channels. We find that clouds increase the radiance of red light by a factor of 17.6, which is much larger than that for blue (7.1). We also find that the gradual decrease in sky radiance observed on clear nights in Berlin appears to be most pronounced at longer wavelengths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 272
Permanent link to this record
 

 
Author Bouroussis, C.A.; Topalis, F.V.
Title Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems – The concept of the drone-gonio-photometer Type Journal Article
Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume (down) 253 Issue Pages 107155
Keywords Instrumentation; Lighting
Abstract This paper presents the ongoing work of the lighting laboratory to develop a standardized method for the measurement of several types of lighting installations using unmanned aircraft systems. The technology of unmanned aircraft systems can incorporate multiple types of sensors and can be programmed to fly in predefined areas and routes in order to perform complex measurements with limited human intervention. This technology provides the freedom of measurements from several angular positions and altitudes in a fast, easy, accurate and repeatable way. The overall aim of this work is to assess the lighting installations, not only against the applicable lighting standards but also to investigate and reveal issues related to light pollution and obtrusive lighting. The latter are issues that in most cases are neglected due to the lack of standardized methods of calculation and measurement. Current assessment methods require illuminance or luminance measurements of horizontal and vertical surfaces generally from the ground. The proposed approach provides a holistic three-dimensional evaluation of the lighting installations beyond the common methods and geometries and opens the discussion for future update of the relevant standards on outdoor lighting. In the scope of this paper, several proof-of-concept cases are presented.
Address Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, 15780, Zografou, Athens, Greece; bouroussis(at)gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2996
Permanent link to this record
 

 
Author Li, X.; Levin, N.; Xie, J.; Li, D.
Title Monitoring hourly night-time light by an unmanned aerial vehicle and its implications to satellite remote sensing Type Journal Article
Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume (down) 247 Issue Pages in press
Keywords Remote Sensing; Skyglow; Instrumentation
Abstract Satellite-observed night-time light in urban areas has been widely used as an indicator for socioeconomic development and light pollution. Up to present, the diurnal dynamics of city light during the night, which are important to understand the nature of human activity and the underlying variables explaining night-time brightness, have hardly been investigated by remote sensing techniques due to limitation of the revisit time and spatial resolution of available satellites. In this study, we employed a consumer-grade unmanned aerial vehicle (UAV) to monitor city light in a study area located in Wuhan City, China, from 8:08 PM, April 15, 2019 to 5:08 AM, April 16, 2019, with an hourly temporal resolution. By using three ground-based Sky Quality Meters (SQMs), we found that the UAV-recorded light brightness was consistent with the ground luminous intensity measured by the SQMs in both the spatial (R2 = 0.72) and temporal dimensions (R2 > 0.94), and that the average city light brightness was consistent with the sky brightness in the temporal dimension (R2 = 0.98), indicating that UAV images can reliably monitor the city's night-time brightness. The temporal analysis showed that different locations had different patterns of temporal changes in their night-time brightness, implying that inter-calibration of two kinds of satellite images with different overpass times would be a challenge. Combining an urban function map of 18 classes and the hourly UAV images, we found that urban functions differed in their temporal light dynamics. For example, the outdoor sports field lost 97.28% of its measured brightness between 8: 08 PM – 4:05 AM, while an administrative building only lost 4.56%, and the entire study area lost 61.86% of its total brightness. Within our study area, the period between 9:06 PM and 10:05 PM was the period with largest amount of light loss. The spectral analysis we conducted showed that city light colors were different in some urban functions, with the major road being the reddest region at 8:08 PM and becoming even redder at 4:05 AM. This preliminary study indicates that UAVs are a good tool to investigate city light at night, and that city light is very complex in both of the temporal and spatial dimensions, requiring comprehensive investigation using more advanced UAV techniques, and emphasizing the need for geostationary platforms for night-time light sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3014
Permanent link to this record