toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fiorentin, P.; Boscaro, F. url  doi
openurl 
  Title A method for measuring the light output of video advertising reproduced by LED billboards Type Journal Article
  Year 2019 Publication Measurement Abbreviated Journal Measurement  
  Volume (up) 138 Issue Pages 25-33  
  Keywords Lighting; Energy; Instrumentation; Planning; Light-emitting diode displays; Photometry; Video recording; Image analysis; CCD image sensors; Luminance; Glare  
  Abstract Improving knowledge of the light output of digital billboards is important to better assess their effect on driver distraction when they are installed along roads. In this work the emission of an LED based billboard is measured when playing advertising video-clips. In particular the average and the maximum values of the luminance are evaluated. The same video-clips are also analyzed when shown on an LCD monitor, aiming at separating the variability of the videos and of the playing device. The results allow to evaluate an utilization factor of the billboard: the videos have an average luminance around 11% and a peak luminance of 35% of the maximum luminance obtainable from the billboard. The power consumption of the billboard is measured, aside the photometric analysis. The luminance of the device are found linearly dependent on both the power and the effective current absorbed by the device from the grid, with a discrepancy within 6%. It could be a useful information for billboard manufacturers to qualify their product when they do not own photometric instruments.  
  Address Department of Industrial Engineering, University of Padova, Padova, Italy; pietro.fiorentin(at)unipd.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0263-2241 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2214  
Permanent link to this record
 

 
Author Zheng, Q.; Weng, Q.; Wang, K. url  doi
openurl 
  Title Developing a new cross-sensor calibration model for DMSP-OLS and Suomi-NPP VIIRS night-light imageries Type Journal Article
  Year 2019 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing  
  Volume (up) 153 Issue Pages 36-47  
  Keywords Remote Sensing; Instrumentation  
  Abstract Night-time light (NTL) data provides a great opportunity to monitor human activities and settlements. Currently, global-scale NTL data are acquired by two satellite sensors, i.e., DMSP-OLS and VIIRS, but the data collected by the satellites are not compatible. To address this issue, we proposed a method for generating long-term and consistent NTL data. First, a logistic model was employed to estimate and smooth the missing DMSP-OLS data. Second, the Lomb-Scargle Periodogram technique was used to statistically examine the presence of seasonality of monthly VIIRS time series. The seasonal effect, noisy and unstable observations in VIIRS were eliminated by the BFAST time-series decomposition algorithm. Then, we proposed a residuals corrected geographically weighted regression model (GWRc) to generate DMSP-like VIIRS data. A consistent NTL time series from 1996 to 2017 was formed by combining the DMSP-OLS and synthetic DMSP-like VIIRS data. Our assessment shows that the proposed GWRc model outperformed existing methods (e.g., power function model), yielding a lower regression RMSE (6.36), a significantly improved pixel-level NTL intensity consistency (SNDI = 82.73, R2 = 0.986) and provided more coherent results when used for urban area extraction. The proposed method can be used to extend NTL time series, and in conjunction with the upcoming yearly VIIRS data and Black Marble daily VIIRS data, it is possible to support long-term NTL-based studies such as monitoring light pollution in ecosystems, and mapping human activities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-2716 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2361  
Permanent link to this record
 

 
Author Ma, S.; Yan, W.; Huang, Y.-X.; Ai, W.-H.; Zhao, X. url  doi
openurl 
  Title Vicarious calibration of S-NPP/VIIRS day-night band using deep convective clouds Type Journal Article
  Year 2015 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume (up) 158 Issue Pages 42-55  
  Keywords Instrumentation, Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1077  
Permanent link to this record
 

 
Author Duriscoe, D.M. url  doi
openurl 
  Title Photometric indicators of visual night sky quality derived from all-sky brightness maps Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume (up) 181 Issue Pages 33-45  
  Keywords Skyglow; Instrumentation  
  Abstract Wide angle or fisheye cameras provide a high resolution record of artificial sky glow, which results from the scattering of escaped anthropogenic light by the atmosphere, over the sky vault in the moonless nocturnal environment. Analysis of this record yields important indicators of the extent and severity of light pollution. The following indicators were derived through numerical analysis of all-sky brightness maps: zenithal, average all-sky, median, brightest, and darkest sky brightness. In addition, horizontal and vertical illuminance, resulting from sky brightness were computed. A natural reference condition to which the anthropogenic component may be compared is proposed for each indicator, based upon an iterative analysis of a high resolution natural sky model. All-sky brightness data, calibrated in the V band by photometry of standard stars and converted to luminance, from 406 separate data sets were included in an exploratory analysis. Of these, six locations representing a wide range of severity of impact from artificial sky brightness were selected as examples and examined in detail. All-sky average brightness is the most unbiased indicator of impact to the environment, and is more sensitive and accurate in areas of slight to moderate light pollution impact than zenith brightness. Maximum vertical illuminance provides an excellent indicator of impacts to wilderness character, as does measures of the brightest portions of the sky. Zenith brightness, the workhorse of field campaigns, is compared to the other indicators and found to correlate well with horizontal illuminance, especially at relatively bright sites. The median sky brightness describes a brightness threshold for the upper half of the sky, of importance to telescopic optical astronomy. Numeric indicators, in concert with all-sky brightness maps, provide a complete assessment of visual sky quality at a site.  
  Address U.S. National Park Service, Natural Sounds and Night Skies Division, 351 Pacu Lane, Bishop, CA 93514, USA; dan_duriscoe(at)nps.gov  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ ; IDA @ john @ Serial 1376  
Permanent link to this record
 

 
Author Pravettoni, M.; Strepparava, D.; Cereghetti, N.; Klett, S.; Andretta, M.; Steiger, M. url  doi
openurl 
  Title Indoor calibration of Sky Quality Meters: linearity, spectral responsivity and uncertainty analysis Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (up) 181 Issue in press Pages 74-86  
  Keywords Instrumentation  
  Abstract The indoor calibration of brightness sensors requires extremely low values of irradiance in the most accurate and reproducible way. In this work the testing equipment of an ISO 17025 accredited laboratory for electrical testing, qualification and type approval of solar photovoltaic modules was modified in order to test the linearity of the instruments from few mW/cm2 down to fractions of nW/cm2, corresponding to levels of simulated brightness from 6 to 19 mag/arcsec2. Sixteen Sky Quality Meter (SQM) produced by Unihedron, a Canadian manufacturer, were tested, also assessing the impact of the ageing of their protective glasses on the calibration coefficients and the drift of the instruments. The instruments are in operation on measurement points and observatories at different sites and altitudes in Southern Switzerland, within the framework of OASI, the Environmental Observatory of Southern Switzerland. The authors present the results of the calibration campaign: linearity; brightness calibration, with and without protective glasses; transmittance measurement of the glasses; and spectral responsivity of the devices. A detailed uncertainty analysis is also provided, according to the ISO 17025 standard.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1399  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: