toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fiorentin, P.; Boscaro, F. url  doi
openurl 
  Title A method for measuring the light output of video advertising reproduced by LED billboards Type Journal Article
  Year (down) 2019 Publication Measurement Abbreviated Journal Measurement  
  Volume 138 Issue Pages 25-33  
  Keywords Lighting; Energy; Instrumentation; Planning; Light-emitting diode displays; Photometry; Video recording; Image analysis; CCD image sensors; Luminance; Glare  
  Abstract Improving knowledge of the light output of digital billboards is important to better assess their effect on driver distraction when they are installed along roads. In this work the emission of an LED based billboard is measured when playing advertising video-clips. In particular the average and the maximum values of the luminance are evaluated. The same video-clips are also analyzed when shown on an LCD monitor, aiming at separating the variability of the videos and of the playing device. The results allow to evaluate an utilization factor of the billboard: the videos have an average luminance around 11% and a peak luminance of 35% of the maximum luminance obtainable from the billboard. The power consumption of the billboard is measured, aside the photometric analysis. The luminance of the device are found linearly dependent on both the power and the effective current absorbed by the device from the grid, with a discrepancy within 6%. It could be a useful information for billboard manufacturers to qualify their product when they do not own photometric instruments.  
  Address Department of Industrial Engineering, University of Padova, Padova, Italy; pietro.fiorentin(at)unipd.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0263-2241 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2214  
Permanent link to this record
 

 
Author Su, Z.; Zhong, X.; Zhang, G.; Li, Y.; He, X.; Wang, Q.; Wei, Z.; He, C.; Li, D. url  doi
openurl 
  Title High Sensitive Night-time Light Imaging Camera Design and In-orbit Test of Luojia1-01 Satellite Type Journal Article
  Year (down) 2019 Publication Sensors Abbreviated Journal Sensors  
  Volume 19 Issue 4 Pages 797  
  Keywords Remote Sensing; Instrumentation  
  Abstract Luojia1-01 satellite is the first scientific experimental satellite applied for night-time light remote sensing data acquisition, and the payload is an optical camera with high sensitivity, high radiation measurement accuracy and stable elements of interior orientation. At the same time, a special shaped hood is designed, which significantly improved the ability of the camera to suppress stray light. Camera electronics adopts the integrated design of focal plane and imaging processing, which greatly reduces the volume and weight of the system. In this paper, the design of the optical camera is summarized, and the results of in-orbit imaging performance tests are analyzed. The results show that the dynamic modulation transfer function (MTF) of the camera is better than 0.17, and the SNR is better than 35 dB under the condition of 10 lx illuminance and 0.3 reflectivity and all indicators meet the design requirements. The data obtained have been widely applied in many fields such as the process of urbanization, light pollution analysis, marine fisheries detection and military.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2215  
Permanent link to this record
 

 
Author Zhang, K.; Zhong, X.; Zhang, G.; Li, D.; Su, Z.; Meng, Y.; Jiang, Y. url  doi
openurl 
  Title Thermal Stability Optimization of the Luojia 1-01 Nighttime Light Remote-Sensing Camera's Principal Distance Type Journal Article
  Year (down) 2019 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 19 Issue 5 Pages 990  
  Keywords Instrumentation; Luojia 1-01; nighttime light remote-sensing camera; principal distance; optical-passive athermal design; thermal stability  
  Abstract The instability of the principal distance of the nighttime light remote-sensing camera of the Luojia 1-01 satellite directly affects the geometric accuracy of images, consequently affecting the results of analysis of nighttime light remote-sensing data. Based on the theory of optical passive athermal design, a mathematical model of optical-passive athermal design for principal distance stabilization is established. Positive and negative lenses of different materials and the mechanical structures of different materials are matched to optimize the optical system. According to the index requirements of the Luojia 1-01 camera, an image-telecentric optical system was designed under the guidance of the established mathematical model. In the temperature range of -20 degrees C to +60 degrees C, the principal distance of the system changes from -0.01 mum to +0.28 mum. After on-orbit testing, the geometric accuracy of the designed nighttime light remote-sensing camera is better than 0.20 pixels and less than index requirement of 0.3 pixels, which indicating that the principal distance maintains good stability on-orbit and meets the application requirements of nighttime light remote sensing.  
  Address School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China. jiangyh@whu.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30813556 Approved no  
  Call Number GFZ @ kyba @ Serial 2238  
Permanent link to this record
 

 
Author Bará, S.; Tapia, C.; Zamorano, J. url  doi
openurl 
  Title Absolute Radiometric Calibration of TESS-W and SQM Night Sky Brightness Sensors Type Journal Article
  Year (down) 2019 Publication Sensors Abbreviated Journal Sensors  
  Volume 19 Issue 6 Pages 1336  
  Keywords Instrumentation; calibration; SQM; TESS; photometer; sky brightness  
  Abstract We develop a general optical model and describe the absolute radiometric calibration of the readings provided by two widely-used night sky brightness sensors based on irradiance-to-frequency conversion. The calibration involves the precise determination of the overall spectral sensitivity of the devices and also the constant G relating the output frequency of the light-to-frequency converter chip to the actual band-weighted and field-of-view averaged spectral radiance incident on the detector (brightness). From these parameters, we show how to define a rigorous astronomical absolute photometric system in which the sensor measurements can be reported in units of magnitudes per square arcsecond with precise physical meaning.  
  Address Departmento Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2263  
Permanent link to this record
 

 
Author Sánchez de Miguel, A.; Bará, S.; Aubé, M.; Cardiel, N.; Tapia, C.E.; Zamorano, J.; Gaston, K.J. url  doi
openurl 
  Title Evaluating Human Photoreceptoral Inputs from Night-Time Lights Using RGB Imaging Photometry Type Journal Article
  Year (down) 2019 Publication Journal of Imaging Abbreviated Journal J. Imaging  
  Volume 5 Issue 4 Pages 49  
  Keywords Human Health; Remote Sensing; Instrumentation  
  Abstract Night-time lights interact with human physiology through different pathways starting at the retinal layers of the eye; from the signals provided by the rods; the S-, L- and M-cones; and the intrinsically photosensitive retinal ganglion cells (ipRGC). These individual photic channels combine in complex ways to modulate important physiological processes, among them the daily entrainment of the neural master oscillator that regulates circadian rhythms. Evaluating the relative excitation of each type of photoreceptor generally requires full knowledge of the spectral power distribution of the incoming light, information that is not easily available in many practical applications. One such instance is wide area sensing of public outdoor lighting; present-day radiometers onboard Earth-orbiting platforms with sufficient nighttime sensitivity are generally panchromatic and lack the required spectral discrimination capacity. In this paper, we show that RGB imagery acquired with off-the-shelf digital single-lens reflex cameras (DSLR) can be a useful tool to evaluate, with reasonable accuracy and high angular resolution, the photoreceptoral inputs associated with a wide range of lamp technologies. The method is based on linear regressions of these inputs against optimum combinations of the associated R, G, and B signals, built for a large set of artificial light sources by means of synthetic photometry. Given the widespread use of RGB imaging devices, this approach is expected to facilitate the monitoring of the physiological effects of light pollution, from ground and space alike, using standard imaging technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2313-433X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2294  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: