|   | 
Details
   web
Records
Author Alves-Simoes, M.; Coleman, G.; Canal, M.
Title Effects of type of light on mouse circadian behaviour and stress levels Type Journal Article
Year 2015 Publication Laboratory Animals Abbreviated Journal Lab. Anim.
Volume 50 Issue 1 Pages 21-29
Keywords Animals; mouse; albino; pigmented; fluorescent light; LED light; Circadian Rhythm
Abstract Light is the principal synchronizing environmental factor for the biological clock. Light quantity (intensity), and light quality (type of light source) can have different effects. The aim of this study was to determine the effects of the type of light experienced from the time of birth on mouse growth, circadian behaviour and stress levels. We raised pigmented and albino mice under 24 h light–dark cycles of either fluorescent or white light-emitting diode (LED) light source during the suckling stage, and the animals were then exposed to various light environments after weaning and their growth rate, locomotor activity and plasma corticosterone concentration were measured. We found that the type of light the animals were exposed to did not affect the animals’ growth rates or stress levels. However, we observed significant effects on the expression of the locomotor activity rhythm under low contrast light–dark cycles in pigmented mice, and under constant light in both albino and pigmented mice. These results highlight the importance of environmental light quality (light source) on circadian behavioural rhythms, and the need for close monitoring of light environments in animal facilities.
Address (down) University of Manchester, Faculty of Life Sciences, AV Hill Building, Oxford Road, Manchester M13 9PT, UK. Email: maria.canal{at}manchester.ac.uk
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1177
Permanent link to this record
 

 
Author Gaughan, A. E., Oda, T., Sorichetta, A., Stevens, F. R., Bondarenko, M., Bun, R., Krauser, L., Yetman, G., & Nghiem, S. V.
Title Evaluating nighttime lights and population distribution as proxies for mapping anthropogenic CO2 emission in Vietnam, Cambodia and Laos Type Journal Article
Year 2019 Publication Environmental Research Communications Abbreviated Journal
Volume 1 Issue 9 Pages 091006
Keywords Remote Sensing; greenhouse gas emissions; GHG; Asia; Vietnam; Cambodia; Laos; nighttime light
Abstract Tracking spatiotemporal changes in GHG emissions is key to successful implementation of the United Nations Framework Convention on Climate Change (UNFCCC). And while emission inventories often provide a robust tool to track emission trends at the country level, subnational emission estimates are often not reported or reports vary in robustness as the estimates are often dependent on the spatial modeling approach and ancillary data used to disaggregate the emission inventories. Assessing the errors and uncertainties of the subnational emission estimates is fundamentally challenging due to the lack of physical measurements at the subnational level. To begin addressing the current performance of modeled gridded CO2 emissions, this study compares two common proxies used to disaggregate CO2 emission estimates. We use a known gridded CO2 model based on satellite-observed nighttime light (NTL) data (Open Source Data Inventory for Anthropogenic CO2, ODIAC) and a gridded population dataset driven by a set of ancillary geospatial data. We examine the association at multiple spatial scales of these two datasets for three countries in Southeast Asia: Vietnam, Cambodia and Laos and characterize the spatiotemporal similarities and differences for 2000, 2005, and 2010. We specifically highlight areas of potential uncertainty in the ODIAC model, which relies on the single use of NTL data for disaggregation of the non-point emissions estimates. Results show, over time, how a NTL-based emissions disaggregation tends to concentrate CO2 estimates in different ways than population-based estimates at the subnational level. We discuss important considerations in the disconnect between the two modeled datasets and argue that the spatial differences between data products can be useful to identify areas affected by the errors and uncertainties associated with the NTL-based downscaling in a region with uneven urbanization rates.
Address (down) University of Louisville, Department of Geography and Geosciences, Louisville, KY, United States of America; ae.gaughan(at)louisville.edu
Corporate Author Thesis
Publisher IOP Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2727
Permanent link to this record
 

 
Author Verovnik, R.; Fiser, Z.; Zaksek, V.
Title How to reduce the impact of artificial lighting on moths: a case study on cultural heritage sites in Slovenia Type Journal Article
Year 2015 Publication Journal for Nature Conservation Abbreviated Journal J. for Nature Conservation
Volume 28 Issue Pages 105–111
Keywords Animals; Lighting; Ecology; ecological light pollution; moth diversity; flight-to-light; artificial illumination; Lepidoptera; Slovenis; Europe
Abstract In an ever more artificially illuminated world, common moth behaviour, flight-to-light, causes declines in their abundance and diversity that can have severe impacts on ecosystems. To test if it is possible to reduce the number of moths attracted to artificially illuminated objects, the original lighting of 15 cultural heritage buildings in Slovenia was substituted with blue or yellow lighting. These three illumination types differed in the amount of luminance, percentage of UV and short-wavelength light which are known to affect flight-to-light of moths. During our three-year field study approximately 20% of all known moth species in Slovenia were recorded. The blue and yellow illumination type attracted up to six times less specimens and up to four times less species compared to the original illumination type. This was true for all detected moths as well as within separate moth groups. This gives our study a high conservation value: usage of alternative, environmentally more acceptable illumination can greatly reduce the number of moths attracted to artificially illuminated objects.
Address (down) University of Ljubljana, Biotechnical faculty, Department of Biology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; valerija.zaksek(at)bf.uni-lj.si
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1617-1381 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1268
Permanent link to this record
 

 
Author Rivas, M.L.; Santidrián Tomillo, P.; Diéguez Uribeondo, J.; Marco, A.
Title Leatherback hatchling sea-finding in response to artificial lighting: Interaction between wavelength and moonlight Type Journal Article
Year 2015 Publication Journal of Experimental Marine Biology and Ecology Abbreviated Journal J of Experim Marine Biol & Ecol
Volume 463 Issue Pages 143-149
Keywords Animals; Costa Rica; conservation; misorientation; light pollution; sea turtles; tourist development; Leatherback turtle; Dermochelys coriacea
Abstract Over the last decades, growing human populations have led to the rising occupation of coastal areas over the globe causing light pollution. For this reason, it is important to assess how this impact threatens endangered wildlife. Leatherback turtles (Dermochelys coriacea) face many threats of anthropogenic origin including light pollution on nesting beaches. However, little is known about the specific effects. In this study we studied the effect of different light wavelengths (orange, red, blue, green, yellow and white lights) on hatchling orientation under the presence and absence of moonlight by analyzing: (i) the mean angle of orientation, (ii) crawling duration, and (iii) track patterns.

Hatchling orientation towards the sea was always better under controlled conditions. In the absence of moonlight, leatherback hatchlings were phototaxically attracted to the experimental focus of light (misoriented) for the colours blue, green, yellow and white lights. Orange and red lights caused a lower misorientation than other colors, and orange lights produced the lowest disrupted orientation (disorientation). On nights when moonlight was present, hatchlings were misorientated under blue and white artificial lights. Crawling duration was low for misoriented hatchlings and high for the disoriented individuals. Our conclusion to this is that hatchlings can detect and be impacted by a wide range of the light spectrum and we recommend avoiding the presence of artificial lights on nesting beaches. Additionally, actions to control and mitigate artificial lighting are especially important during dark nights when moonlight is absent.
Address (down) University of Granada, Campus Fuentenueva s/n. Spain
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0981 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1083
Permanent link to this record
 

 
Author Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J.
Title Stemming the Tide of Light Pollution Encroaching into Marine Protected Areas: Light pollution in marine protected areas Type Journal Article
Year 2015 Publication Conservation Letters Abbreviated Journal Conservation Lett.
Volume 9 Issue 3 Pages 164–171
Keywords Animals; Anthropogenic disturbance; artificial light; marine ecosystems; marine protected areas; pollution
Abstract Many marine ecosystems are shaped by regimes of natural light guiding the behavior of their constituent species. As evidenced from terrestrial systems, the global introduction of nighttime lighting is likely influencing these behaviors, restructuring marine ecosystems, and compromising the services they provide. Yet the extent to which marine habitats are exposed to artificial light at night is unknown. We quantified nighttime artificial light across the world's network of marine protected areas (MPAs). Artificial light is widespread and increasing in a large percentage of MPAs. While increases are more common among MPAs associated with human activity, artificial light is encroaching into a large proportion of even those marine habitats protected with the strongest legislative designations. Given the current lack of statutory tools, we propose that allocating “Marine Dark Sky Park” status to MPAs will help incentivize responsible authorities to hold back the advance of artificial light.
Address (down) University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK. Thomas.Davies(at)exeter.ac.uk
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755263X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1222
Permanent link to this record