|   | 
Details
   web
Records
Author Hölker, F.; Wurzbacher, C.; Weißenborn, C.; Monaghan, M.T.; Holzhauer, S.I.J.; Premke, K.
Title Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 370 Issue Pages (down) 20140130
Keywords Animals; DNA metabarcoding; next-generation sequencing; light pollution; photoautotrophs; diatoms; Cyanobacteria; primary production; carbon turnover; freshwater
Abstract An increasing proportion of the Earth's surface is illuminated at night. In aquatic ecosystems, artificial light at night (ALAN) may influence microbial communities living in the sediments. These communities are highly diverse and play an important role in the global carbon cycle. We combined field and laboratory experiments using sediments from an agricultural drainage system to examine how ALAN affects communities and alters carbon mineralization. Two identical light infrastructures were installed parallel to a drainage ditch before the start of the experiment. DNA metabarcoding indicated that both sediment communities were similar. After one was lit for five months (July–December 2012) we observed an increase in abundance (diatoms, Cyanobacteria) in ALAN-exposed sediments. In laboratory incubations mimicking summer and winter (six weeks each), communities in sediments that were exposed to ALAN for 1 year (July 2012–June 2013) showed less overall seasonal change compared with ALAN-naive sediments. Nocturnal community respiration was reduced in ALAN-exposed sediments. In long-term exposed summer-sediments, we observed a shift from negative to positive net ecosystem production. Our results indicate ALAN may alter sediment microbial communities over time, with implications for ecosystem-level functions. It may thus have the potential to transform inland waters to nocturnal carbon sinks.
Address Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Mu¨ggelseedamm 301/310, Berlin 12587, Germany; hoelker@igb-berlin.de
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1127
Permanent link to this record
 

 
Author Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J.
Title Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 2015 Issue Pages (down) 20140131
Keywords Ecology; light pollution; photopollution; artificial light at night; biotic interactions; community-level; bottom-up effects; grasslands; herbivores; invertebrates; pea aphid; Acyrthosiphon pisum; plants; insects
Abstract Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore.
Address Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; k.j.gaston@exeter.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1128
Permanent link to this record
 

 
Author Rydin, C; Bolinder, K
Title Moonlight pollination in the gymnosperm Ephedra (Gnetales) Type Journal Article
Year 2015 Publication Biology Letters Abbreviated Journal Biol. Lett.
Volume 11 Issue 4 Pages (down) 20140993
Keywords Plants; anemophily; entomophily; lunar phases; nocturnal insects; lunar cycle; light at night; Ephedra; Ephedra distachya; pollination
Abstract Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait.
Address Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 106 91, Sweden
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1143
Permanent link to this record
 

 
Author Davies, T.W.; Coleman, M.; Griffith, K.M.; Jenkins, S.R.
Title Night-time lighting alters the composition of marine epifaunal communities Type Journal Article
Year 2015 Publication Biology Letters Abbreviated Journal Biology Letters
Volume 11 Issue 4 Pages (down) 20150080-20150080
Keywords Ecology; artificial light pollution; marine ecosystems; epifaunal communities; larval recruitment; anthropogenic disturbance; light-emitting diodes; LED; biodiversity; artificial light at night; biology
Abstract Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities.
Address Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, UK
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1744-9561 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1162
Permanent link to this record
 

 
Author Ouyang, J.Q; Maaike de Jong, M.H.; Visser, M.E.; van Grunsven, R.H.A.; Ouyang, J.Q
Title Stressful colours: corticosterone concentrations in a free-living songbird vary with the spectral composition of experimental illumination Type Journal Article
Year 2015 Publication Biology Letters Abbreviated Journal Biol. Lett.
Volume 11 Issue Pages (down) 20150517
Keywords Animals; birds; corticosterone; stress; Parus major; great tit; artificial light; light spectra
Abstract Organisms have evolved under natural daily light/dark cycles for millions of years. These cycles have been disturbed as night-time darkness is increasingly replaced by artificial illumination. Investigating the physiological consequences of free-living organisms in artificially lit environments is crucial to determine whether nocturnal lighting disrupts circadian rhythms, changes behaviour, reduces fitness and ultimately affects population numbers. We make use of a unique, large-scale network of replicated field sites which were experimentally illuminated at night using lampposts emanating either red, green, white or no light to test effect on stress hormone concentrations (corticosterone) in a songbird, the great tit (Parus major). Adults nesting in white-light transects had higher corticosterone concentrations than in the other treatments. We also found a significant interaction between distance to the closest lamppost and treatment type: individuals in red light had higher corticosterone levels when they nested closer to the lamppost than individuals nesting farther away, a decline not observed in the green or dark treatment. Individuals with high corticosterone levels had fewer fledglings, irrespective of treatment. These results show that artificial light can induce changes in individual hormonal phenotype. As these effects vary considerably with light spectrum, it opens the possibility to mitigate these effects by selecting street lighting of specific spectra.
Address Department of Animal Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; j.ouyang(at)nioo.knaw.nl
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1248
Permanent link to this record