toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arnold, G.; Mellinger, D.; Markowitz, P.; Burke, M.; Lahar, D. url  openurl
  Title A Win-Win-Win for Municipal Street Lighting: Converting Two-Thirds of Vermont's Street Lights to LED by 2014. Type Journal Article
  Year 2012 Publication American Council for an Energy-Efficient Economy. Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords Lighting Systems  
  Abstract Reducing energy costs and enhancing the nighttime environment with LED street lighting

is by now well understood. However, few municipalities and utilities have successfully taken

advantage of this opportunity to convert their street lighting operations to LEDs. Before a

system-wide conversion of existing street lights can occur, a utility must obtain the large amount

of required capital, identify appropriate LED street light equipment for their applications,

consider changes in utility rate structures, and design effective methods for recovering costs.

Using Vermont as a case study, this paper presents a partnership model among the statewide

energy efficiency utility, the state’s largest electric utilities, and several municipalities. The

model was designed to overcome the challenges to widespread LED street light conversion. By

2014, more than two-thirds of Vermont’s municipal street lights will be upgraded to LED

technology. The conversion will: (1) provide municipalities with better nighttime street lighting

and significant cost savings—at no additional capital expense to the municipalities, (2) deliver

8,000 MWh of cost-effective new savings to the energy efficiency utility, and (3) deliver

financially attractive returns for Vermont’s utilities. This win-win-win model is scalable and

replicable, and is now being considered in Massachusetts and Rhode Island
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 446  
Permanent link to this record
 

 
Author Pantoni, R.; Fonseca, C.; Brandão, D. url  doi
openurl 
  Title Street Lighting System Based on Wireless Sensor Networks. Type Journal Article
  Year 2012 Publication Chapter 16 in Energy Efficiency – The Innovative Ways for Smart Energy, the Future Towards Modern Utilities, M Eissa ed. Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords Lighting Systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 447  
Permanent link to this record
 

 
Author Kyba, C.C.M.; Tong, K.P.; Bennie, J.; Birriel, I.; Birriel, J.J.; Cool, A.; Danielsen, A.; Davies, T.W.; Outer, P.N. den; Edwards, W.; Ehlert, R.; Falchi, F.; Fischer, J.; Giacomelli, A.; Giubbilini, F.; Haaima, M.; Hesse, C.; Heygster, G.; Hölker, F.; Inger, R.; Jensen, L.J.; Kuechly, H.U.; Kuehn, J.; Langill, P.; Lolkema, D.E.; Nagy, M.; Nievas, M.; Ochi, N.; Popow, E.; Posch, T.; Puschnig, J.; Ruhtz, T.; Schmidt, W.; Schwarz, R.; Schwope, A.; Spoelstra, H.; Tekatch, A.; Trueblood, M.; Walker, C.E.; Weber, M.; Welch, D.L.; Zamorano, J.; Gaston, K.J. url  doi
openurl 
  Title Worldwide variations in artificial skyglow Type Journal Article
  Year 2015 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 5 Issue (up) Pages 8409  
  Keywords Skyglow; light pollution; measurements; remote sensing; sky brightness; calibration  
  Abstract Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope, and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artificial light. Nearly all of the study sites were polluted by artificial light. A non-linear relationship is observed between the sky brightness on clear and overcast nights, with a change in behavior near the rural to urban landuse transition. Overcast skies ranged from a third darker to almost 18 times brighter than clear. Clear sky radiances estimated by the World Atlas of Artificial Night Sky Brightness were found to be overestimated by ~25%; our dataset will play an important role in the calibration and ground truthing of future skyglow models. Most of the brightly lit sites darkened as the night progressed, typically by ~5% per hour. The great variation in skyglow radiance observed from site-to-site and with changing meteorological conditions underlines the need for a long-term international monitoring program.  
  Address Leibniz-Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany  
  Corporate Author Thesis  
  Publisher Nature Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1103  
Permanent link to this record
 

 
Author Müller, A.; Wuchterl, G.; Sarazin, M. url  openurl
  Title Measuring the Night Sky Brightness with the Lightmeter. Type Journal Article
  Year 2011 Publication ReVMexAA Abbreviated Journal  
  Volume 41 Issue (up) Pages 46–49  
  Keywords Instrumentation; instrumentation: photometers; light pollution; methods: data analysis; methods: observational; site testing  
  Abstract We present a newly developed, low-cost photometer for long-term monitoring of the night sky brightness and

light pollution on Earth. The so-called Lightmeter is an as far as possible stand-alone operational, fully

weatherproof, and maintenance-free device. It provides a high data sampling rate of up to 1 Hz as well as a

superb sensitivity covering the whole brightness range down to the darkest night time conditions. The excellent

performance of the Lightmeter allows a continuously monitoring of the night sky brightness and opens a wide

range of applications at an observatory site like determining overall sky conditions in real time, cloud detection

and estimation of their velocity, measuring relative changes in extinction as well as the detection of long term

trends in brightness caused by an increase of artificial illumination. We will present first results of measurements

taken at Cerro Armazones, one of the best obser
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 471  
Permanent link to this record
 

 
Author Cinzano, P. url  openurl
  Title Night Sky Photometry with Sky Quality Meter Type Journal Article
  Year 2005 Publication Technical Report 9, ISTIL. V1.4. Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords Instrumentation; light pollution; night sky brightness; photometry; instruments; calibration  
  Abstract Sky Quality Meter, a low cost and pocket size night sky brightness photometer, opens to the general public the possibility to quantify the quality of the night sky. Expecting a large diffusion of measurements taken with this instrument, I tested and characterized it. I analyzed with synthetic photometry and laboratory measurements the relationship between the SQM photometrical system and the main systems used in light pollution studies. I evaluated the conversion factors to Johnson’s B and V bands, CIE photopic and CIE scotopic responses for typical spectra and the spectral mismatch correction factors when specific filters are added.  
  Address Dipartimento di Astronomia, Vicolo dell’Osservatorio 2, I-35100 Padova, Italy; cinzano(at)lplab.it  
  Corporate Author Thesis  
  Publisher ISTIL Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 473  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: