|   | 
Details
   web
Records
Author Shih, K.-T.; Liu, J.-S.; Shyu, F.; Yeh, S.-L.; Chen, H.H.
Title Blocking harmful blue light while preserving image color appearance Type Journal Article
Year 2016 Publication (up) ACM Transactions on Graphics Abbreviated Journal Tog
Volume 35 Issue 6 Pages 1-10
Keywords Lighting; Vision
Abstract Recent study in vision science has shown that blue light in a certain frequency band affects human circadian rhythm and impairs our health. Although applying a light blocker to an image display can block the harmful blue light, it inevitably makes an image look like an aged photo. In this paper, we show that it is possible to reduce harmful blue light while preserving the blue appearance of an image. Moreover, we optimize the spectral transmittance profile of blue light blocker based on psychophysical data and develop a color compensation algorithm to minimize color distortion. A prototype using notch filters is built as a proof of concept.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0730-0301 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1640
Permanent link to this record
 

 
Author Brainard, G.C.; Coyle, W.; Ayers, M.; Kemp, J.; Warfield, B.; Maida, J.; Bowen, C.; Bernecker, C.; Lockley, S.W.; Hanifin, J.P.
Title Solid-state lighting for the International Space Station: Tests of visual performance and melatonin regulation Type Journal Article
Year 2013 Publication (up) Acta Astronautica Abbreviated Journal Acta Astronautica
Volume 92 Issue 1 Pages 21-28
Keywords Human Health; Lighting
Abstract The International Space Station (ISS) uses General Luminaire Assemblies (GLAs) that house fluorescent lamps for illuminating the astronauts' working and living environments. Solid-state light emitting diodes (LEDs) are attractive candidates for replacing the GLAs on the ISS. The advantages of LEDs over conventional fluorescent light sources include lower up-mass, power consumption and heat generation, as well as fewer toxic materials, greater resistance to damage and long lamp life. A prototype Solid-State Lighting Assembly (SSLA) was developed and successfully installed on the ISS. The broad aim of the ongoing work is to test light emitted by prototype SSLAs for supporting astronaut vision and assessing neuroendocrine, circadian, neurobehavioral and sleep effects. Three completed ground-based studies are presented here including experiments on visual performance, color discrimination, and acute plasma melatonin suppression in cohorts of healthy, human subjects under different SSLA light exposure conditions within a high-fidelity replica of the ISS Crew Quarters (CQ). All visual tests were done under indirect daylight at 201 lx, fluorescent room light at 531 lx and 4870 K SSLA light in the CQ at 1266 lx. Visual performance was assessed with numerical verification tests (NVT). NVT data show that there are no significant differences in score (F=0.73, p=0.48) or time (F=0.14, p=0.87) for subjects performing five contrast tests (10%–100%). Color discrimination was assessed with Farnsworth-Munsell 100 Hue tests (FM-100). The FM-100 data showed no significant differences (F=0.01, p=0.99) in color discrimination for indirect daylight, fluorescent room light and 4870 K SSLA light in the CQ. Plasma melatonin suppression data show that there are significant differences (F=29.61, p<0.0001) across the percent change scores of plasma melatonin for five corneal irradiances, ranging from 0 to 405 &#956;W/cm2 of 4870 K SSLA light in the CQ (0–1270 lx). Risk factors for the health and safety of astronauts include disturbed circadian rhythms and altered sleep–wake patterns. These studies will help determine if SSLA lighting can be used both to support astronaut vision and serve as an in-flight countermeasure for circadian desynchrony, sleep disruption and cognitive performance deficits on the ISS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-5765 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1533
Permanent link to this record
 

 
Author Santos, C.D.; Miranda, A.C.; Granadeiro, J.P.; Lourenço, P.M.; Saraiva, S.; Palmeirim, J.M.
Title Effects of artificial illumination on the nocturnal foraging of waders Type Journal Article
Year 2010 Publication (up) Acta Oecologica Abbreviated Journal Acta Oecologica
Volume 36 Issue 2 Pages 166-172
Keywords waders; light pollution; animals
Abstract Large areas of natural and semi-natural habitats are exposed to artificial illumination from adjacent urban areas and roads. Estuarine and coastal wetlands are particularly exposed to such illumination because shorelines often are heavily utilized by man. However, the impact of artificial illumination on the waders that forage in these highly productive habitats is virtually unknown. We evaluated the effects of artificial illumination on the nocturnal habitat selection and foraging behaviour of six wader species with different feeding strategies: three visual foragers, two species that alternate visual and tactile strategies (mixed foragers), and one tactile forager. We quantified the number of birds and their foraging behaviour at sites affected and not affected by streetlights, and also before and after illuminating experimental sites. Areas illuminated by streetlights were used more during the night by visual foragers, and to a lesser extent by mixed foragers, than non-illuminated areas. Visual foragers increased their foraging effort in illuminated areas, and mixed foragers changed to more efficient visual foraging strategies. These behavioural shifts improved prey intake rate by an average of 83% in visual and mixed foragers. We have showed that artificial illumination has a positive effect on the nocturnal foraging of waders, but on the other hand may draw them to degraded areas close to urban centres, and potentially raises their exposure to predators. Our findings suggest that artificial illumination is worth investigation as a tool in the management of intertidal habitats for waders.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1146609X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 46
Permanent link to this record
 

 
Author van der Burght, B.W.; Hansen, M.; Olsen, J.; Zhou, J.; Wu, Y.; Nissen, M.H.; Sparrow, J.R.
Title Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells Type Journal Article
Year 2013 Publication (up) Acta Ophthalmologica Abbreviated Journal Acta Ophthalmol
Volume 91 Issue 7 Pages e537-45
Keywords Apoptosis; Cell Line; Cell Survival; Gene Expression Regulation/*physiology; Humans; Light; Lipofuscin/genetics; Oligonucleotide Array Sequence Analysis; Principal Component Analysis; Pyridinium Compounds; RNA, Messenger/genetics; Real-Time Polymerase Chain Reaction; Retinal Pigment Epithelium/metabolism/pathology/*radiation effects; Retinoids/*genetics; Transcriptome; A2e; age-related macular degeneration; apoptosis; complement cascade; gene expression; retinal pigment epithelial cells; blue light; retinal pigment epithelial; epigenetics
Abstract PURPOSE: Accumulation of bisretinoids as lipofuscin in retinal pigment epithelial (RPE) cells is implicated in the pathogenesis of some blinding diseases including age-related macular degeneration (AMD). To identify genes whose expression may change under conditions of bisretinoid accumulation, we investigated the differential gene expression in RPE cells that had accumulated the lipofuscin fluorophore A2E and were exposed to blue light (430 nm). METHODS: A2E-laden RPE cells were exposed to blue light (A2E/430 nm) at various time intervals. Cell death was quantified using Dead Red staining, and RNA levels for the entire genome was determined using DNA microarrays (Affymetrix GeneChip Human Genome 2.0 Plus). Array results for selected genes were confirmed by real-time reverse-transcriptase polymerase chain reaction. RESULTS: Principal component analysis revealed that the A2E-laden RPE cells irradiated with blue light were clearly distinguishable from the control samples. We found differential regulation of genes belonging to the following functional groups: transcription factors, stress response, apoptosis and immune response. Among the last mentioned were downregulation of four genes that coded for proteins that have an inhibitory effect on the complement cascade: (complement factor H, complement factor H-related 1, complement factor I and vitronectin) and of two belonging to the classical pathway (complement component 1, s subcomponent and complement component 1, r subcomponent). CONCLUSION: This study demonstrates that blue light irradiation of A2E-laden RPE cells can alter the transcription of genes belonging to different functional pathways including stress response, apoptosis and the immune response. We suggest that these molecules may be associated to the pathogenesis of AMD and can potentially serve as future therapeutic targets.
Address Department of International Health, Immunology and Microbiology, Eye Research Unit, University of Copenhagen, Copenhagen, DenmarkDepartment of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DenmarkDepartment of Ophthalmology, Columbia University, New York, New York, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-375X ISBN Medium
Area Expedition Conference
Notes PMID:23742627 Approved no
Call Number IDA @ john @ Serial 346
Permanent link to this record
 

 
Author Jou, J.-H.; Hsieh, C.-Y.; Tseng, J.-R.; Peng, S.-H.; Jou, Y.-C.; Hong, J.H.; Shen, S.-M.; Tang, M.-C.; Chen, P.-C.; Lin, C.-H.
Title Candle Light-Style Organic Light-Emitting Diodes Type Journal Article
Year 2013 Publication (up) Advanced Functional Materials Abbreviated Journal Adv. Funct. Mater.
Volume 23 Issue 21 Pages 2750-2757
Keywords organic light emitting diodes; candle light; firelight; OLED; CRI; color rendition
Abstract In response to the call for a physiologically-friendly light at night that shows low color temperature, a candle light-style organic light emitting diode (OLED) is developed with a color temperature as low as 1900 K, a color rendering index (CRI) as high as 93, and an efficacy at least two times that of incandescent bulbs. In addition, the device has a 80% resemblance in luminance spectrum to that of a candle. Most importantly, the sensationally warm candle light-style emission is driven by electricity in lieu of the energy-wasting and greenhouse gas emitting hydrocarbon-burning candles invented 5000 years ago. This candle light-style OLED may serve as a safe measure for illumination at night. Moreover, it has a high color rendering index with a decent efficiency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616301X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 284
Permanent link to this record