toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ritonja, J.; McIsaac, M.A.; Sanders, E.; Kyba, C.C.M.; Grundy, A.; Cordina-Duverger, E.; Spinelli, J.J.; Aronson, K.J. url  doi
openurl 
  Title Outdoor light at night at residences and breast cancer risk in Canada Type Journal Article
  Year 2020 Publication European Journal of Epidemiology Abbreviated Journal Eur J Epidemiol  
  Volume in press Issue Pages  
  Keywords Human Health; Breast cancer; Case-control study; Circadian disruption; Light at night; Night work; Women's health  
  Abstract Experimental and epidemiologic studies suggest that light at night (LAN) exposure disrupts circadian rhythm, and this disruption may increase breast cancer risk. We investigated the potential association between residential outdoor LAN and breast cancer risk. A population-based case-control study was conducted in Vancouver, British Columbia and Kingston, Ontario, Canada with incident breast cancer cases, and controls frequency matched by age in the same region. This analysis was restricted to 844 cases and 905 controls who provided lifetime residential histories. Using time-weighted average duration at each home 5-20 years prior to study entry, two measures of cumulative average outdoor LAN were calculated using two satellite data sources. Logistic regression was used to estimate the relationship between outdoor LAN and breast cancer risk, considering interactions for menopausal status and night shift work. We found no association between residential outdoor LAN and breast cancer for either measure of LAN [OR comparing highest vs. lowest tertile (DNB) = 0.95, 95% CI 0.70-1.27]. We also found no association when considering interactions for menopausal status and past/current night work status. These findings were robust to changes to years of residential data considered, residential mobility, and longer exposure windows. Our findings are consistent with studies reporting that outdoor LAN has a small effect or no effect on breast cancer risk.  
  Address Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen's University, Kingston, ON, Canada. aronson@queensu.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0393-2990 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32026169 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2826  
Permanent link to this record
 

 
Author Bará, S.; Aubé, M.; Barentine, J.; Zamorano, J. url  doi
openurl 
  Title Magnitude to luminance conversions and visual brightness of the night sky Type Journal Article
  Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume 493 Issue 2 Pages 2429–2437  
  Keywords Skyglow; light pollution; atmospheric effects; techniques: photometric; methods: numerical; luminance  
  Abstract The visual brightness of the night sky is not a single-valued function of its brightness in other photometric bands, because the transformations between photometric systems depend on the spectral power distribution of the skyglow. We analyze the transformation between the night sky brightness in the Johnson-Cousins V band (mV, measured in magnitudes per square arcsecond, mpsas) and its visual luminance (L, in SI units cd m−2) for observers with photopic and scotopic adaptation, in terms of the spectral power distribution of the incident light. We calculate the zero-point luminances for a set of skyglow spectra recorded at different places in the world, including strongly light-polluted locations and sites with nearly pristine natural dark skies. The photopic skyglow luminance corresponding to mV = 0.00 mpsas is found to vary between 1.11–1.34 × 105 cd m−2 if mV is reported in the absolute (AB) magnitude scale, and between 1.18–1.43 × 105 cd m−2 if a Vega scale for mV is used instead. The photopic luminance for mV = 22.0 mpsas is correspondingly comprised between 176 and 213 μcd m−2 (AB), or 187 and 227 μcd m−2 (Vega). These constants tend to decrease for increasing correlated color temperatures (CCT). The photopic zero-point luminances are generally higher than the ones expected for blackbody radiation of comparable CCT. The scotopic-to-photopic luminance ratio (S/P) for our spectral dataset varies from 0.8 to 2.5. Under scotopic adaptation the dependence of the zero-point luminances with the CCT, and their values relative to blackbody radiation, are reversed with respect to photopic ones.  
  Address Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia; salva.bara(at)usc.gal  
  Corporate Author Thesis  
  Publisher Oxford Academic Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial (down) 2825  
Permanent link to this record
 

 
Author Schulte-Römer, N.; Meier, J.; Söding, M.; Dannemann, E. url  doi
openurl 
  Title The LED Paradox: How Light Pollution Challenges Experts to Reconsider Sustainable Lighting Type Journal Article
  Year 2019 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 11 Issue 21 Pages 6160  
  Keywords Energy; Lighting; Society  
  Abstract In the 21st century, the notion of “sustainable lighting” is closely associated with LED technology. In the past ten years, municipalities and private light users worldwide have installed light-emitting diodes in urban spaces and public streets to save energy. Yet an increasing body of interdisciplinary research suggests that supposedly sustainable LED installations are in fact unsustainable, because they increase light pollution. Paradoxically, blue-rich cool-white LED lighting, which is the most energy-efficient, also appears to be the most ecologically unfriendly. Biologists, physicians and ecologists warn that blue-rich LED light disturbs the circadian day-and-night rhythm of living organisms, including humans, with potential negative health effects on individual species and whole ecosystems. Can the paradox be solved? This paper explores this question based on our transdisciplinary research project Light Pollution—A Global Discussion. It reveals how light pollution experts and lighting professionals see the challenges and potential of LED lighting from their different viewpoints. This expert feedback shows that “sustainable LED lighting” goes far beyond energy efficiency as it raises complex design issues that imply stakeholder negotiation. It also suggests that the LED paradox may be solved in context, but hardly in principle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2824  
Permanent link to this record
 

 
Author Liu, Z.; Lv, Y.; Ding, R.; Chen, X.; Pu, G. url  doi
openurl 
  Title Light Pollution Changes the Toxicological Effects of Cadmium on Microbial Community Structure and Function Associated with Leaf Litter Decomposition Type Journal Article
  Year 2020 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci  
  Volume 21 Issue 2 Pages  
  Keywords Plants; Illumina Sequencing; artificial light at night; cadmium pollution; extracellular enzyme activities; litter decomposition; microbial biodiversity  
  Abstract Artificial light at night (ALAN/A) can not only alter the behavior and communication of biological organisms, it can also interact with other stressors. Despite its widespread use and the numerous potential ecological effects, little is known about the impact of ALAN on plant litter decomposition under cadmium (Cd) pollution in aquatic ecosystems. In an indoor microcosm experiment, we tested single and combined effects of ALAN and Cd on the activities and community structure of fungi associated with plant litter. The results showed that ALAN and/or Cd can change both water and leaf litter characteristics. ALAN exposure not only altered fungal community structure and their correlations, but also increased the activities of alkaline phosphatase, beta-glucosidase, and cellobiohydrolase. The leaf litter decomposition rate was 71% higher in the A-Cd treatment than that in the N-Cd treatment, indicating that the presence of ALAN weakened the negative impact of Cd on leaf litter decomposition. These results suggested that ALAN exposure mitigated the negative effect of Cd on leaf litter decomposition, contributing to the duel effect of ALAN on leaf litter decomposition. Overall, the results expand our understanding of ALAN on the environment and highlight the contribution of ALAN to Cd toxicity in aquatic ecosystems.  
  Address Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31936535 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2818  
Permanent link to this record
 

 
Author Breitler, J.-C.; Djerrab, D.; Leran, S.; Toniutti, L.; Guittin, C.; Severac, D.; Pratlong, M.; Dereeper, A.; Etienne, H.; Bertrand, B. url  doi
openurl 
  Title Full moonlight-induced circadian clock entrainment in Coffea arabica Type Journal Article
  Year 2020 Publication BMC Plant Biology Abbreviated Journal BMC Plant Biol  
  Volume 20 Issue 1 Pages 24  
  Keywords Moonlight; Plants  
  Abstract BACKGROUND: It is now well documented that moonlight affects the life cycle of invertebrates, birds, reptiles, and mammals. The lunisolar tide is also well-known to alter plant growth and development. However, although plants are known to be very photosensitive, few studies have been undertaken to explore the effect of moonlight on plant physiology. RESULTS: Here for the first time we report a massive transcriptional modification in Coffea arabica genes under full moonlight conditions, particularly at full moon zenith and 3 h later. Among the 3387 deregulated genes found in our study, the main core clock genes were affected. CONCLUSIONS: Moonlight also negatively influenced many genes involved in photosynthesis, chlorophyll biosynthesis and chloroplast machinery at the end of the night, suggesting that the full moon has a negative effect on primary photosynthetic machinery at dawn. Moreover, full moonlight promotes the transcription of major rhythmic redox genes and many heat shock proteins, suggesting that moonlight is perceived as stress. We confirmed this huge impact of weak light (less than 6 lx) on the transcription of circadian clock genes in controlled conditions mimicking full moonlight.  
  Address UMR IPME, Univ. Montpellier, CIRAD, IRD, F-34394, Montpellier, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2229 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31941456 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2817  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: