toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Neale, W., Marr, J., McKelvey, N., & Kuzel, M. url  doi
openurl 
  Title Nighttime Visibility in Varying Moonlight Conditions Type Journal Article
  Year 2019 Publication SAE Technical Paper 2019-01-1005 Abbreviated Journal  
  Volume Issue Pages  
  Keywords Public Safety; Moonlight; Vision  
  Abstract When the visibility of an object or person in the roadway from a driver’s perspective is an issue, the potential effect of moonlight is sometimes questioned. To assess this potential effect, methods typically used to quantify visibility were performed during conditions with no moon and with a full moon. In the full moon condition, measurements were collected from initial moon rise until the moon reached peak azimuth. Baseline ambient light measurements of illumination at the test surface were measured in both no moon and full moon scenarios. Additionally, a vehicle with activated low beam headlamps was positioned in the testing area and the change in illumination at two locations forward of the vehicle was recorded at thirty-minute intervals as the moon rose to the highest position in the sky. Also, two separate luminance readings were recorded during the test intervals, one location 75 feet in front and to the left of the vehicle, and another 150 feet forward of the vehicle. These luminance readings yielding the change in reflected light attributable to the moon. In addition to the quantitative measurement of light contributed by the moon, documentation to the change in visibility of objects and pedestrians located on the roadway were documented through photographs. Calibrated nighttime photographs were taken from the driver’s perspective inside the vehicle with low beam headlamps activated. The photographs were analyzed after testing to determine how the light intensity of the pixels in the photographs changed at each thirty-minute interval due to the additional light contribution from the moon. The results of this testing indicate that the quantifiable change in visibility distance attributable to added moonlight was negligible, and in real-world driving situations, the effect of additional illumination from a full moon would be unlikely to affect the detection of an object or pedestrian in or near the travel lane of the roadway.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2355  
Permanent link to this record
 

 
Author Rea, M.; Skinner, N.; Bullough, J. url  doi
openurl 
  Title A Novel Barricade Warning Light System Using Wireless Communications Type Journal Article
  Year 2018 Publication SAE Technical Paper 2018-01-5036 Abbreviated Journal  
  Volume In press Issue Pages  
  Keywords Lighting; Safety  
  Abstract Workers in construction and transportation sectors are at increased risk for work-related injuries and fatalities by nearby traffic. Barricade-mounted warning lights meeting current specifications do not always provide consistent and adequate visual guidance to drivers and can contribute to glare and reduced safety. Through an implementation of sensors and wireless communications, a novel, intelligent set of warning lights and a tablet-based interface were developed. The lights modulate between 100% and 10% of maximum intensity rather than between 100% and off in order to improve visual guidance and adjust their overall intensity based on ambient conditions. The lights can be synchronized or operated in sequential flash patterns at any frequency between 1 and 4 Hz, and sequential patterns automatically update based on global positioning satellite (GPS) locations displayed in the control interface. A successful field demonstration of the system verified that its functions were viewed favorably by transportation safety personnel.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2117  
Permanent link to this record
 

 
Author Clanton, N.; Gibbons, R.; Garcia, J.; Barber, M. url  doi
openurl 
  Title Seattle LED Adaptive Lighting Study Type Report
  Year 2014 Publication Northwest Energy Efficiency Alliance Abbreviated Journal NEEA  
  Volume Issue E14-286 Pages  
  Keywords Public Safety; Lighting; Planning; Vision  
  Abstract The Northwest Energy Efficiency Alliance (NEEA) and the City of Seattle partnered to evaluate the future of solid state street lighting in the Pacific Northwest with a two-night demonstration in Seattle's Ballard neighborhood in March 2012. The study evaluates the effectiveness of LED streetlights on nighttime driver object detection visibility as function of light source spectral distribution (color temperature in degrees K) and light distribution. Clanton & Associates and VTTI also evaluated adaptive lighting (tuning of streetlights during periods of reduced vehicular and pedestrian activity) at three levels: one hundred percent of full light output, fifty percent of full light output, and twenty-five percent of full light output. The study, led by Clanton & Associates, Continuum Industries, and the VTTI, built upon previous visual performance studies conducted in Anchorage, Alaska; San Diego, California; and San Jose, California. The use of LED technology for city street lighting is becoming more widespread. While these lights are primarily touted for their energy efficiency, the combination of LEDs with advanced control technology, changes to lighting criteria, and a better understanding of human mesopic (low light level) visibility creates an enormous potential for energy savings and improved motorist and pedestrian visibility and safety. Data from these tests support the following statements: LED luminaires with a correlated color temperature of 4100K provide the highest detection distance, including statistically significantly better detection distance when compared to HPS luminaires of higher wattage. The non-uniformity of the lighting on the roadway surface provides a visibility enhancement and greater contrast for visibility. Contrast of objects, both positive and negative, is a better indicator of visibility than is average luminance level. Dimming the LED luminaires to fifty percent of IES RP-8 levels did not significantly reduce object detection distance in dry pavement conditions. Participants perceived dimming of sidewalks as less acceptable than dimming to the same level on the roadway. Asymmetric lighting did reduce glare and performed similarly to the symmetric lighting at the same color temperature (4100K).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1763  
Permanent link to this record
 

 
Author Kinzey, B. R.; Smalley, E.; Ghosh, S.; Tuenge, J. R.; Pipkin, A.; Trevino, K. url  doi
openurl 
  Title Lighting and Power Upgrade Recommendations for U.S. National Park Service Caribbean Units Type Journal Article
  Year 2019 Publication National Park Service Caribbean Units Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting; Conservation; Ecology; Skyglow; Planning  
  Abstract The U.S. National Park Service (NPS) maintains and operates numerous park units along the Eastern Seaboard of the United States, extending into the Caribbean to Commonwealth territories like Puerto Rico and the U.S. Virgin Islands (USVI). Several of these units were in the direct path of hurricanes Irma and Maria during the 2017 hurricane season and suffered considerable damage, including power outages, structural damage, and destroyed equipment. In February 2018, a task force deployed to three locations in the Caribbean to assess hurricane damage to the existing lighting systems and energy infrastructure. The primary objective was providing related recommendations for resiliency upgrades to the lighting and electrical supply systems, with special added emphasis on the numerous goals, objectives, and requirements of the NPS (such as protecting night skies, wildlife, wilderness character, cultural resources, etc.). Numerous opportunities exist for simultaneously increasing resiliency and preserving natural environments within these sensitive locations, and technological approaches that work in the extreme conditions encountered here should readily translate to many other less complex sites across the greater park system. Ultimately, care and attention to detail in implementation are the most important underlying requirements for success across the myriad needs likely encountered at these sites, once commitment to resolving them has been secured  
  Address  
  Corporate Author Thesis  
  Publisher U.S. Department of Energy Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2626  
Permanent link to this record
 

 
Author Yao, Q.; Wang, H.; Dai, Q.; Shi, F. url  doi
openurl 
  Title Quantification assessment of light pollution of façade lighting display in Shenzhen, China Type Journal Article
  Year 2020 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 28 Issue 9 Pages 14100  
  Keywords Lighting; Instrumentation  
  Abstract In this work, we investigated 39 façade lighting displays, all of which consisted of tri-chromatic light sources, namely blue-, green-, and red- light units, in Shenzhen, China. We extracted the spectral characteristics of the mean peak wavelength/full-width at half-maximum,and proposed universal spectral models. We further established the ‘chromaticity-performance’ relation to quantitatively assess the impact of light pollution on typical species based on corresponding action spectra. The findings provide a low-cost, fast and precise approach to assess light pollution of complicated light environment, and may help reduce energy waste and adverse environmental consequences associated with light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2893  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: