toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lin, J.; Ding, X.; Hong, C.; Pang, Y.; Chen, L.; Liu, Q.; Zhang, X.; Xin, H.; Wang, X. url  doi
openurl 
  Title Several biological benefits of the low color temperature light-emitting diodes based normal indoor lighting source Type Journal Article
  Year (down) 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages 7560  
  Keywords Human Health; Lighting  
  Abstract Currently, light pollution has become a nonnegligible issue in our daily life. Artificial light sources with high color temperature were deem to be the major pollution source, which could induce several adverse effects on human's health. In our previous research, we have firstly developed an artificial indoor light with low color temperature (1900 K). However, the biological effects of this artificial light on human's health are unclear. Here, four artificial lights (1900 K, 3000 K, 4000 K and 6600 K) were used to evaluate some biological changes in both human (in total 152 person-times) and murine models. Compared with other three high color temperature artificial lights, our lights (1900 K) presented a positive effect on promoting the secreting of melatonin and glutamate, protecting human's eyes, accelerating would healing and hair regeneration. These systematical studies indicated that the proposed low color temperature (1900 K) light could provide several significant benefits in human's daily life.  
  Address The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China. wangxiaolei@ncu.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31101840 Approved no  
  Call Number GFZ @ kyba @ Serial 2501  
Permanent link to this record
 

 
Author Korompeli, A.; Kavrochorianou, N.; Molcan, L.; Muurlink, O.; Boutzouka, E.; Myrianthefs, P.; Fildissis, G. url  doi
openurl 
  Title Light affects heart rate's 24-h rhythmicity in intensive care unit patients: an observational study Type Journal Article
  Year (down) 2019 Publication Nursing in Critical Care Abbreviated Journal Nurs Crit Care  
  Volume 24 Issue 5 Pages 320-325  
  Keywords Lighting; Human Health; Heart Rate; ICU; Circadian Rhythm  
  Abstract BACKGROUND: Intensive care unit (ICU) patients experience two affronts to normal 24-h rhythms: largely internal events such as medication and external factors such as light, noise and nursing interventions. AIMS AND OBJECTIVES: We investigated the impact of light variance within an ICU on 24-h rhythmicity of three key physiological parameters: heart rate (HR), mean arterial blood pressure (MAP) and body temperature (BT) in this patient population. DESIGN: Patients were assigned to beds either in the 'light' or 'dark' side within a single ICU. An actigraph continuously recorded light intensity for a 24-72-h period. METHODS: Measurements of HR, MAP and BT were recorded every 30 min. RESULTS: HR, MAP and BT did not follow 24-h rhythmicity in all patients. Higher light exposure in the Light Side of the ICU (122.3 versus 50.6 lx) was related to higher HR (89.4 versus 79.8 bpm), which may translate to clinically relevant outcomes in a larger sample. Duration of stay, the one clinical outcome measured in this study, showed no significant variation between the groups (p = 0.147). CONCLUSIONS: ICU patients are exposed to varying light intensities depending on bed positioning relative to natural sunlight, affecting the 24-h rhythm of HR. Larger, well-controlled studies also investigating the effect of relevant light intensity are indicated. RELEVANCE TO CLINICAL PRACTICE: Light is a variable that can be manipulated in the constrained environment of an ICU, thus offering an avenue for relatively unobtrusive interventions.  
  Address National and Kapodistrian University of Athens, University ICU, Ag. Anargyroi General Hospital, Athens, Greece  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1362-1017 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31087602 Approved no  
  Call Number GFZ @ kyba @ Serial 2502  
Permanent link to this record
 

 
Author Sielachowska, M., & Zajkowski, M. url  doi
openurl 
  Title Assessment of Light Pollution Based on the Analysis of Luminous Flux Distribution in Sports Facilities Type Journal Article
  Year (down) 2019 Publication Engineer of the XXI Century Abbreviated Journal  
  Volume 70 Issue Pages 139-150  
  Keywords Lighting  
  Abstract The article attempts to assess the amount of light pollution with artificial light from sports facilities. The football stadium has been analysed, while considering a few configurations that take into account different coefficients of reflection of the luminous flux for the tribunes and the object main board. Simplified model of the football stadium was introduced to the DIALux simulation software, and then computer calculations were made for selected variants. In addition, the applicable normative requirements in the field of lighting systems were discussed and the mathematical distribution of the luminous flux in the examined sports facility was presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2504  
Permanent link to this record
 

 
Author Wicht, M.; Kuffer, M. url  doi
openurl 
  Title The continuous built-up area extracted from ISS night-time lights to compare the amount of urban green areas across European cities Type Journal Article
  Year (down) 2019 Publication European Journal of Remote Sensing Abbreviated Journal European Journal of Remote Sensing  
  Volume 52 Issue Pages 58-73  
  Keywords Remote Sensing; continuous built-up area; Planning; International Space Station; ISS; Nighttime light  
  Abstract The presence of urban green areas significantly impacts urban inhabitants’ well-being. However, comparative studies across European cities are constraint by urban administrative boundaries, which commonly do not match the continuous built-up urban area. This makes comparative research on environmental indicators very problematic, as administrative boundaries are not usually appropriate to define the urban human environment. Therefore, this study aimis to explore the use of night-time light (NTL) images of the International Space Station (ISS) to delineate the continuous built-up area (CBA) of selected European cities to calculate the urban green area share per alternatively derived city extent. The result of the CBA shows that NTL images provide a robust data source to make the urban extent of European cities comparable. By comparing results of different datasets on green areas, we discuss the limitations of existing indicators and opportunities for new ones. Results show that green areas are rarely in close proximity to human living environment, even though the share of urban green areas within the CBA might be larger, as in comparison to the administrative boundary. We conclude that ISS NTL imagery is very suitable for mapping the CBA when aiming at comparability of environmental indicators across cities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2279-7254 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2506  
Permanent link to this record
 

 
Author Song, J.; Tong, X.; Wang, L.; Zhao, C.; Prishchepov, A.V. url  doi
openurl 
  Title Monitoring finer-scale population density in urban functional zones: A remote sensing data fusion approach Type Journal Article
  Year (down) 2019 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning  
  Volume 190 Issue Pages 103580  
  Keywords Remote Sensing; nighttime light; numerical methods  
  Abstract Spatial distribution information on population density is essential for understanding urban dynamics. In recent decades, remote sensing techniques have often been applied to assess population density, particularly night-time light data (NTL). However, such attempts have resulted in mapped population density at coarse/medium resolution, which often limits the applicability of such data for fine-scale territorial planning. The improved quality and availability of multi-source remote sensing imagery and location-based service data (LBS) (from mobile networks or social media) offers new potential for providing more accurate population information at the micro-scale level. In this paper, we developed a fine-scale population distribution mapping approach by combining the functional zones (FZ) mapped with high-resolution satellite images, NTL data, and LBS data. Considering the possible variations in the relationship between population distribution and nightlight brightness in functional zones, we tested and found spatial heterogeneity of the relationship between NTL and the population density of LBS samples. Geographically weighted regression (GWR) was thus implemented to test potential improvements to the mapping accuracy. The performance of the following four models was evaluated: only ordinary least squares regression (OLS), only GWR, OLS with functional zones (OLS&FZ) and GWR with functional zones (GWR&FZ). The results showed that NTL-based GWR&FZ was the most accurate and robust approach, with an accuracy of 0.71, while the mapped population density was at a unit of 30 m spatial resolution. The detailed population density maps developed in our approach can contribute to fine-scale urban planning, healthcare and emergency responses in many parts of the world.  
  Address Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark; songjinchao08(at)163.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-2046 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2516  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: