|   | 
Details
   web
Records
Author Marchant, P.
Title Evaluating area-wide crime-reduction measures Type Journal Article
Year 2005 Publication Significance Abbreviated Journal (down) Significance
Volume 2 Issue 2 Pages 62-65
Keywords lighting; crime; safety
Abstract When we look around an imperfect world, we feel an understandable impulse to improve matters. We may therefore decide to intervene by prescribing medical treatment or by introducing crime reduction measures. But how do we know that what we do is likely to work? In medicine the standard answer is to do a trial; not surprisingly the same is true in crime reduction. But, says Paul Marchant, the lessons learned from medical trials have not been implemented in the latter field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1740-9705 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 253
Permanent link to this record
 

 
Author Marchant, P.
Title Do brighter, whiter street lights improve road safety? Type Journal Article
Year 2019 Publication Significance Abbreviated Journal (down) Significance
Volume 16 Issue 5 Pages 8-9
Keywords Public Safety; Lighting; Statistics
Abstract Would a billion‐dollar investment in improved street lighting make Australian roads safer at night? Paul Marchant finds the evidence wanting
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1740-9705 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2686
Permanent link to this record
 

 
Author den Outer, P.; Lolkema, D.; Haaima, M.; van der Hoff, R.; Spoelstra, H.; Schmidt, W.
Title Intercomparisons of nine sky brightness detectors Type Journal Article
Year 2011 Publication Sensors (Basel, Switzerland) Abbreviated Journal (down) Sensors (Basel)
Volume 11 Issue 10 Pages 9603-9612
Keywords Calibration; Darkness; *Extraterrestrial Environment; Humans; Light; Luminescent Measurements; Netherlands; *Optical Phenomena; Optics and Photonics/*instrumentation/*methods; Sky Quality Meter; artificial lighting; intercalibration; intercomparison; light pollution; night sky brightness
Abstract Nine Sky Quality Meters (SQMs) have been intercompared during a night time measurement campaign held in the Netherlands in April 2011. Since then the nine SQMs have been distributed across The Netherlands and form the Dutch network for monitoring night sky brightness. The goal of the intercomparison was to infer mutual calibration factors and obtain insight into the variability of the SQMs under different meteorological situations. An ensemble average is built from the individual measurements and used as a reference to infer the mutual calibration factors. Data required additional synchronization prior to the calibration determination, because the effect of moving clouds combined with small misalignments emerges as time jitter in the measurements. Initial scatter of the individual instruments lies between +/-14%. Individual night time sums range from -16% to +20%. Intercalibration reduces this to 0.5%, and -7% to +9%, respectively. During the campaign the smallest luminance measured was 0.657 +/- 0.003 mcd/m(2) on 12 April, and the largest value was 5.94 +/- 0.03 mcd/m(2) on 2 April. During both occurrences interfering circumstances like snow cover or moonlight were absent.
Address National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands. peter.den.outer@rivm.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:22163715; PMCID:PMC3231263 Approved no
Call Number IDA @ john @ Serial 196
Permanent link to this record
 

 
Author Elvidge, C.D.; Keith, D.M.; Tuttle, B.T.; Baugh, K.E.
Title Spectral identification of lighting type and character Type Journal Article
Year 2010 Publication Sensors (Basel, Switzerland) Abbreviated Journal (down) Sensors (Basel)
Volume 10 Issue 4 Pages 3961-3988
Keywords Led; Nightsat; lighting efficiency; lighting types; nighttime lights; photopic band
Abstract We investigated the optimal spectral bands for the identification of lighting types and the estimation of four major indices used to measure the efficiency or character of lighting. To accomplish these objectives we collected high-resolution emission spectra (350 to 2,500 nm) for forty-three different lamps, encompassing nine of the major types of lamps used worldwide. The narrow band emission spectra were used to simulate radiances in eight spectral bands including the human eye photoreceptor bands (photopic, scotopic, and “meltopic”) plus five spectral bands in the visible and near-infrared modeled on bands flown on the Landsat Thematic Mapper (TM). The high-resolution continuous spectra are superior to the broad band combinations for the identification of lighting type and are the standard for calculation of Luminous Efficacy of Radiation (LER), Correlated Color Temperature (CCT) and Color Rendering Index (CRI). Given the high cost that would be associated with building and flying a hyperspectral sensor with detection limits low enough to observe nighttime lights we conclude that it would be more feasible to fly an instrument with a limited number of broad spectral bands in the visible to near infrared. The best set of broad spectral bands among those tested is blue, green, red and NIR bands modeled on the band set flown on the Landsat Thematic Mapper. This set provides low errors on the identification of lighting types and reasonable estimates of LER and CCT when compared to the other broad band set tested. None of the broad band sets tested could make reasonable estimates of Luminous Efficacy (LE) or CRI. The photopic band proved useful for the estimation of LER. However, the three photoreceptor bands performed poorly in the identification of lighting types when compared to the bands modeled on the Landsat Thematic Mapper. Our conclusion is that it is feasible to identify lighting type and make reasonable estimates of LER and CCT using four or more spectral bands with minimal spectral overlap spanning the 0.4 to 1.0 um region.
Address Earth Observation Group, Solar and Terrestrial Division, NOAA National Geophysical Data Center, 325 Broadway, Boulder, CO 80305, USA. chris.elvidge@noaa.gov
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:22319336; PMCID:PMC3274255 Approved no
Call Number IDA @ john @ Serial 275
Permanent link to this record
 

 
Author Elejoste, P.; Angulo, I.; Perallos, A.; Chertudi, A.; Zuazola, I.J.G.; Moreno, A.; Azpilicueta, L.; Astrain, J.J.; Falcone, F.; Villadangos, J.
Title An easy to deploy street light control system based on wireless communication and LED technology Type Journal Article
Year 2013 Publication Sensors (Basel, Switzerland) Abbreviated Journal (down) Sensors (Basel)
Volume 13 Issue 5 Pages 6492-6523
Keywords Lighting
Abstract This paper presents an intelligent streetlight management system based on LED lamps, designed to facilitate its deployment in existing facilities. The proposed approach, which is based on wireless communication technologies, will minimize the cost of investment of traditional wired systems, which always need civil engineering for burying of cable underground and consequently are more expensive than if the connection of the different nodes is made over the air. The deployed solution will be aware of their surrounding's environmental conditions, a fact that will be approached for the system intelligence in order to learn, and later, apply dynamic rules. The knowledge of real time illumination needs, in terms of instant use of the street in which it is installed, will also feed our system, with the objective of providing tangible solutions to reduce energy consumption according to the contextual needs, an exact calculation of energy consumption and reliable mechanisms for preventive maintenance of facilities.
Address Deusto Institute of Technology (DeustoTech), University of Deusto, Bilbao 48007, Spain. perallos@deusto.es
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:23681092; PMCID:PMC3690067 Approved no
Call Number LoNNe @ kagoburian @ Serial 631
Permanent link to this record