|   | 
Details
   web
Records
Author Marchant, P.; Hale, J.D.; Sadler, J.P.
Title Does changing to brighter road lighting improve road safety? Multilevel longitudinal analysis of road traffic collision frequency during the relighting of a UK city Type Journal Article
Year 2020 Publication Journal of Epidemiology & Community Health Abbreviated Journal J. Epidemiol. Community Health
Volume Issue Pages
Keywords Public Safety; traffic safety; Roadway lighting; road safety; road traffic collisions; United Kingdom
Abstract Background A step change in the night environment is taking place, with the large-scale installation of bright, broad-spectrum road lighting such as white light-emitting diodes (LEDs). One justification for this is a reduction in road traffic collisions (RTCs). This study aimed to estimate the effect of new lighting on personal injury RTCs within a large UK city.

Methods We analysed a 9-year time series of weekly RTC personal injury counts in 132 areas of the city using multilevel modelling. The RTC rate over a full 24-hour period was the primary outcome; darkness and daylight RTC rates were secondary. The background change in RTC rate was separated from the change associated with the number of newly installed bright lamps by including a polynomial underlying time trend for the logarithm of the mean number of collisions per week for each area. The study was based on a rigorous, predesigned and archived protocol.

Results Within-area coefficients for the broad lighting effect were positive; as the number of bright lamps in an area increased, so did the RTC rate. The estimate for the increase in the within-area 24-hour RTC rate is 11% (95% CI 2% to 20%). The estimate of darkness-only RTCs is 16% (95% CI 2% to 32%). If the effect of lighting on darkness RTC rate is adjusted by that for daylight, one obtains 4% (95% CI −12% to +23%).

Conclusion No evidence was found for bright lamps leading to an improvement in road safety in any of the analyses. For this city, introducing brighter road lighting may have compromised safety rather than reducing harm.
Address (down) Room 221, Leighton Hall, Leeds Beckett University, Headingley Campus, Leeds LS1 3HE, UK; p.marchant(at) leedsbeckett.ac.uk
Corporate Author Thesis
Publisher BML Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2835
Permanent link to this record
 

 
Author Gao, X.; Li, X.; Zhang, M.; Chi, L.; Song, C.; Liu, Y.
Title Effects of LED light quality on the growth, survival and metamorphosis ofHaliotis discus hannaiIno larvae Type Journal Article
Year 2016 Publication Aquaculture Research Abbreviated Journal Aquac Res
Volume 47 Issue 12 Pages 3705–3717
Keywords Animals; Haliotis discus hannai Ino; larva; LED light quality; initial stage of lighting; embryonic development; abalone; photobiology
Abstract Light is a key environmental factor influencing the growth, development and survival of aquatic organisms. We examined the effects of different light qualities (red, orange, white, blue, green or no light) and developmental stage at initial lighting [fertilized egg (FE), trochophore larva (TL), or eye-spot larva (EL)] on the growth, development, and survival of larvae of the Pacific abalone Haliotis discus hannai Ino. Larva-hatching success was significantly higher under blue, green, or no light compared with red, orange or white light (P < 0.05). Larval abnormalities were significantly increased under red, orange or white light compared with all other light qualities (P < 0.05). The incidence of metamorphosis in larvae illuminated from the TL stage was significantly higher under blue compared with other light qualities. Irrespective of the stage at initial illumination, the incidence of metamorphosis was lower in larvae cultured under red, orange or no light compared with other light qualities, but the differences were not significant (P > 0.05). Juvenile survival was significantly higher under blue or green compared with other light qualities (P < 0.05), with no significant effect of stage at initial illumination (P > 0.05). Larval size at completion of the shell was unaffected by stage at initial illumination, but was greater under blue or green light, while size at metamorphosis was greatest following illumination with blue or green light since the TL or EL stage (P < 0.05). Metamorphosis time was shortest with blue or green light and in cultures illuminated from the FE or TL stage (P < 0.05). Larval development from the FE to formation of the fourth tubule on the cephalic tentacles was fastest in larvae exposed since the FE or TL stage to blue or green light, compared with other light qualities (P < 0.05). However, there was no difference in terms of the rate of development from the FE to the TL stage between cultures lit or unlit since the FE egg stage (P > 0.05). These results suggest that a blue or green light source applied from the TL stage can increase the hatching and yield of H. discus hannai Ino, with important implications for the development of the aquaculture industry.
Address (down) Research and Development Center of Marine Biotechnology, Institute of Oceanology, Chinese Academy of Science, 7 Nanhai Road, Qingdao 266071, Shandong Province, China; 18354292961(at)163.com.
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1355557X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1340
Permanent link to this record
 

 
Author Ebbensgaard, C.L.
Title Making sense of diodes and sodium: Vision, visuality and the everyday experience of infrastructural change Type Journal Article
Year 2019 Publication Geoforum Abbreviated Journal Geoforum
Volume 103 Issue Pages 95-104
Keywords Lighting; visual sensorium; United Kingdom
Abstract The recognition of vision as a powerful register for organising urban space locates lighting technologies at the heart of urban experience. Recently, scholars have established that lighting technologies shape not just what we see but how we see, drawing attention towards light as that ‘with which we see’. This article shifts attention from the role of lighting in shaping what and how people see, to how people make sense of changes to their visual sensorium—from what lighting infrastructures do to what is done with them. By following older residents living in the London Borough of Newham along routine travels on foot at night, I demonstrate how they make sense of the Council’s initiative to upgrade their 19,500 street-lamps with Light Emitting Diodes. I demonstrate how such infrastructural change exposes an uneven geographical distribution of and access to light and darkness with potentially detrimental consequences for the formation of public life after dark. Recognising how light infrastructures are reframed through everyday life, I demonstrate how LEDs do not necessarily produce their desired effects and how light clutter and light bleed might contribute to producing nocturnal atmospheres where people feel safe and confident. Broadening the understanding of how different technologies and light sources are important for the formation of inclusive nocturnal publics the article sets out a ‘politics of visibility’ that recognises the role of lighting in creating visibility for and of residents.
Address (down) Queen Mary University of London, 329 Mile End Road, London E1 4NS, United Kingdom; c.l.ebbensgaard(at)qmul.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-7185 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2360
Permanent link to this record
 

 
Author Bennett, S.; Alpert, M.; Kubulins, V.; Hansler, R.L.
Title Use of modified spectacles and light bulbs to block blue light at night may prevent postpartum depression Type Journal Article
Year 2009 Publication Medical Hypotheses Abbreviated Journal Med Hypotheses
Volume 73 Issue 2 Pages 251-253
Keywords Depression, Postpartum/*prevention & control; *Eyeglasses; Female; Humans; *Lighting; blue light; light therapy; blue blocker
Abstract In 2001 it was discovered that exposing the eyes to light in the blue end of the visible spectrum suppresses the production of the sleep hormone, melatonin. New mothers need to get up during the night to care for their babies. This is the time when melatonin is normally flowing. Exposing their eyes to light can cut off the flow. It may also reset their circadian (internal) clock. On subsequent nights the melatonin may not begin flowing at the normal time making it difficult to fall asleep. Over time, disruption of the circadian rhythm plus sleep deprivation may result in depression. Women suffering postpartum depression were enrolled in a small clinical trial. Some were provided with glasses and light bulbs that block blue light. Others were equipped with glasses and light bulbs that looked colored but did not block the rays causing melatonin suppression. Those with the “real glasses” recovered somewhat more quickly than those with the placebo glasses and light bulbs. The hypothesis that should be tested in large scale clinical trials is that the risk of postpartum depression can be reduced when a new mother avoids exposing her eyes to blue light when she gets up at night to care for her baby. In the meantime, all new mothers may benefit from using glasses and light bulbs that block blue light when getting up at night to care for their babies.
Address (down) Postpartum Support, International P.O. Box 60931, Santa Barbara, CA 93160, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-9877 ISBN Medium
Area Expedition Conference
Notes PMID:19329259 Approved no
Call Number IDA @ john @ Serial 296
Permanent link to this record
 

 
Author Donners, M.; van Grunsven, R.H.A.; Groenendijk, D.; van Langevelde, F.; Bikker, J.W.; Longcore, T.; Veenendaal, E.
Title Colors of attraction: Modeling insect flight to light behavior Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 434-440
Keywords Animals; ecology; Lighting
Abstract Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model.
Address (down) Plant Ecology and Nature Conservation, Wageningen University, Wageningen, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:29944198 Approved no
Call Number GFZ @ kyba @ Serial 1944
Permanent link to this record