toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Almeida, A.; Santos, B.; Paolo, B.; Quicheron, M. url  doi
openurl 
  Title Solid state lighting review – Potential and challenges in Europe Type Book Chapter
  Year 2014 Publication Renewable and Sustainable Energy Reviews Abbreviated Journal Renewable and Sustainable Energy Reviews  
  Volume 34 Issue Pages 30-48  
  Keywords Lighting; solid-state lighting; LED; lighting technology; review; Europe  
  Abstract According to IEA estimates, about 19% of the electricity used in the world is for lighting loads with a slightly smaller fraction used in the European Union (14%). Lighting was the first service offered by electric utilities and still continues to be one of the largest electrical end-uses. Most current lighting technologies can be vastly improved, and therefore lighting loads present a huge potential for electricity savings.

Solid State Lighting (SSL) is amongst the most energy-efficient and environmentally friendly lighting technology. SSL has already reached a high efficiency level (over 276 lm/W) at ever-decreasing costs. Additionally the lifetime of LED lamps is several times longer than discharge lamps. This paper presents an overview of the state of the art SSL technology trends.

SSL technology is evolving fast, which can bring many advantages to the lighting marketplace. However, there are still some market barriers that are hindering the high cost-effective potential of energy-efficient lighting from being achieved. This paper presents several strategies and recommendations in order to overcome existing barriers and promote a faster penetration of SSL. The estimated savings potential through the application of SSL lighting systems in the European Union (EU) is around 209 TWh, which translates into 77 million tonnes of CO2. The economic benefits translate into the equivalent annual electrical output of about 26 large power plants (1000 MW electric). Similar impacts, in terms of percentage savings, can be expected in other parts of the World.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 319  
Permanent link to this record
 

 
Author Lin, Y.; Liu, Y.; Sun, Y.; Zhu, X.; Lai, J.; Heynderickx, I. url  doi
openurl 
  Title Model predicting discomfort glare caused by LED road lights Type Journal Article
  Year 2014 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 22 Issue 15 Pages 18056  
  Keywords LED; LED lighting; glare; road safety; traffic  
  Abstract To model discomfort glare from LED road lighting, the effect of four key variables on perceived glare was explored. These variables were: the average glare source luminance (Lg), the background luminance (Lb), the solid angle of the glare source from the perspective of the viewer; and the angle between the glare source and the line of sight. Based on these four variables 72 different light conditions were simulated in a scaled experimental set-up. Participants were requested to judge the perceived discomfort glare of these light conditions using the deBoer rating scale. All four variables and some of their interactions had indeed a significant effect on the deBoer rating. Based on these findings, we developed a model, and tested its general applicability in various verification experiments, including laboratory conditions as well as real road conditions. This verification proved the validity of the model with a correlation between measured and predicted values as high as 0.87 and a residual deviation of about 1 unit on the deBoer rating scale. These results filled the gap in estimating discomfort glare of LED road lighting and clarified similarities of and differences in discomfort glare between LED and traditional light sources.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 351  
Permanent link to this record
 

 
Author Snyder, J.D.; Bullough, J.D.; Radetsky, L.C. url  openurl
  Title Innovative Roadway Light Source and Dye Combinations to Improve Visibility and Reduce Environmental Impacts. Type Journal Article
  Year 2013 Publication National Technical Information Service report Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting Systems  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 444  
Permanent link to this record
 

 
Author Zhou, H.; Hawkins, H.G.; Miles, J.D. url  openurl
  Title Guidelines for Freeway Lighting Curfews Type Journal Article
  Year 2013 Publication Technical Report No. FHWA/TX-13/0-6645-1, Texas A&M Transportation Institute Abbreviated Journal  
  Volume Issue Pages á-72  
  Keywords Lighting Systems; Regulation  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 445  
Permanent link to this record
 

 
Author Arnold, G.; Mellinger, D.; Markowitz, P.; Burke, M.; Lahar, D. url  openurl
  Title A Win-Win-Win for Municipal Street Lighting: Converting Two-Thirds of Vermont's Street Lights to LED by 2014. Type Journal Article
  Year 2012 Publication American Council for an Energy-Efficient Economy. Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting Systems  
  Abstract Reducing energy costs and enhancing the nighttime environment with LED street lighting

is by now well understood. However, few municipalities and utilities have successfully taken

advantage of this opportunity to convert their street lighting operations to LEDs. Before a

system-wide conversion of existing street lights can occur, a utility must obtain the large amount

of required capital, identify appropriate LED street light equipment for their applications,

consider changes in utility rate structures, and design effective methods for recovering costs.

Using Vermont as a case study, this paper presents a partnership model among the statewide

energy efficiency utility, the state’s largest electric utilities, and several municipalities. The

model was designed to overcome the challenges to widespread LED street light conversion. By

2014, more than two-thirds of Vermont’s municipal street lights will be upgraded to LED

technology. The conversion will: (1) provide municipalities with better nighttime street lighting

and significant cost savings—at no additional capital expense to the municipalities, (2) deliver

8,000 MWh of cost-effective new savings to the energy efficiency utility, and (3) deliver

financially attractive returns for Vermont’s utilities. This win-win-win model is scalable and

replicable, and is now being considered in Massachusetts and Rhode Island
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 446  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: