|   | 
Details
   web
Records
Author (down) Schroer, S.; Hölker, F.
Title Impact of Lighting on Flora and Fauna Type Book Chapter
Year 2016 Publication Handbook of Advanced Lighting Technology Abbreviated Journal
Volume Issue Pages 1-33
Keywords Ecology; Lighting; Artificial light at night; ALAN; Plants; Animals; review
Abstract Technology, especially artificial light at night (ALAN), often has unexpected impacts on the environment. This chapter addresses both the perception of light by various organisms and the impact of ALAN on flora and fauna. The responses to ALAN are subdivided into the effects of light intensity, color spectra, and duration and timing of illumination. The ways organisms perceive light can be as variable as the habitats they live in. ALAN often interferes with natural light information. It is rarely neutral and has significant impacts beyond human perception. For example, UV light reflection of generative plant parts or the direction of light is used by many organisms as information for foraging, finding spawning sites, or communication. Contemporary outdoor lighting often lacks sustainable planning, even though the protection of species, habitat, and human well-being could be improved by adopting simple technical measures. The increasing use of ALAN with high intensities in the blue part of the spectrum, e.g., fluorescent light and LEDs, is discussed as a critical trend. Blue light is a major circadian signal in higher vertebrates and can substantially impact the orientation of organisms such as numerous insect species. A better understanding of how various types and sources of artificial light, and how organisms perceive ALAN, will be an important step towards more sustainable lighting. Such knowledge is the basis for sustainable lighting planning and the development of solutions to protect biodiversity from the effects of outdoor lighting. Maps that describe the rapid changes in ALAN are urgently needed. In addition, measures are required to reduce the increasing use and intensity of ALAN in more remote areas as signaling thresholds in flora and fauna at night are often close to moonlight intensity and far below streetlight levels.
Address Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany; schroer(at)igb-berlin.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-00295-8 Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1470
Permanent link to this record
 

 
Author (down) Schroer, S.; Hölker, F.
Title Light Pollution Reduction Type Book Chapter
Year 2014 Publication Handbook of Advanced Lighting Technology Abbreviated Journal
Volume Issue Pages
Keywords ligting technology; awareness; skyglow, lighting design
Abstract Artificial light at night is an irreplaceable technology for our society and its activities at nighttime. But this indispensable tool has detrimental side effects, which have only come to light in the past 10–20 years. This chapter reviews ways to implement technology in order to lower the impact of artificial light at night on nature and humans. Further, it provides guidelines for environmental protection and scientific approaches to reduce the increase in light pollution and discusses the urgent need for further research. Measures to prevent obtrusive light and unintentional trespass into homes and natural habitats are

mostly simple solutions like shielding luminaires and predominantly require awareness. Shades are another effective tool to reduce trespass from interior lights. Especially in greenhouses, the use of shades significantly reduces the contribution to skyglow. Artificial light should be switched off whenever it is not needed. Smart, flexible lighting systems can help to use artificial light with precision. The choice of the appropriate illumination has to be balanced by the needs for optimal visibility, human well-being, environmental conservation and protection of the night sky. For visibility, conditions comparable to bright moonlit nights (0.3 lx) are sufficient. Low-level streetlights that produce only 1–3 lx at the surface meet the requirement of facial cognition. Although this light level might be too low for road safety, a consideration of maximum illumination levels in street lighting is recommended. The spectral power distribution of illuminants can impact several environmental parameters. For example, illuminants emitting short wavelengths can sup- press melatonin in higher vertebrates (including humans), are attracting many insect species, and contribute in skyglow above average. Recent findings in different measures for energy efficiency of illuminants at scotopic or mesopic vision conditions compared to photopic conditions indicate that the assessment of lighting products needs fundamental revision. Further research is crucially needed to create refuges for light-sensitive species at night, to measure the impact of artificial light on nature, and also to monitor the improvements of light pollution-reducing measures. Decrees in various regions have helped to lower the impact of artificial light at night significantly. Measures to reduce the impact of artificial light at night need to be carefully balanced with the surrounding environment. Thoughtful guidelines are crucial to reducing the rapid increase in sky brightness worldwide. These guidelines need to be made accessible for decision makers especially in areas which require new light installations.
Address
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Editor Karlicek, Robert Sun, Ching-Chern Zissis, Georgis Ma, Ruiqing
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1569
Permanent link to this record
 

 
Author (down) Schreuder, D.A.
Title Pollution-Free Road Lighting Type Journal Article
Year 2001 Publication Transactions of the International Astronomical Union Abbreviated Journal Trans. Int. Astron. Union
Volume 24 Issue 03 Pages 364
Keywords Lighting; Skyglow
Abstract The beneficial effects of road lighting are often seen as very important. They relate to reducing road accidents and some forms of crime but also enhance the social safety of residents and pedestrians and the amenity for residents. Road traffic in developing countries is much more hazardous than in industrialized countries. Accident rates in ‘low’ income countries may be as much as 35 times higher than in ‘high’ income countries. Thus, it might be much more cost-effective to light roads in the developing world than in the industrialized world. Fighting light pollution is more pressing in developing countries as most of the major high-class astronomical observatories are there. Astronomical observations are disturbed by light from outdoor lighting installations, part of which is scattered in the atmosphere to form ‘sky glow’. The International Lighting Commission CIE has published a Technical Report giving general guidance for lighting designers and policy makers on the reduction of the sky glow.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0251-107X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1726
Permanent link to this record
 

 
Author (down) Saraiji, R,; Oommen, M.S.
Title Dominant contrast as a metric for the lighting of pedestrians Type Journal Article
Year 2014 Publication Lighting Research and Technology Abbreviated Journal
Volume Issue Pages
Keywords Vision; Lighting; Public Safety
Abstract CIE Publication 115 and ANSI/IESNA Recommended Practice 8-00 both use vertical illuminance 1.5 m above the ground as a design criterion for the lighting of pedestrians. While vertical illuminance has the advantage of being easy to calculate and measure, visibility is based primarily on target contrast. A central question related to the visibility of pedestrians is whether drivers need to see the whole pedestrian or can they infer the presence of a pedestrian by recognizing any part of the pedestrian’s shape. The objective of this work was to first explore various pedestrian contrast profiles that could exist and then to find a simplified approach to characterize pedestrian night-time visibility. The problem was addressed through theoretical analyses and computer simulations. Pedestrian contrast was found to be bipolar and dynamic. From the contrast profiles, we developed the concept of dominant contrast, which is defined as the contrast of any part of the pedestrian that provides the highest visibility. Dominant contrast was examined as a metric for street lighting design and night time visibility for (a) an unlit street with car headlights, (b) a lit street without car headlights and (c) a lit street with car headlights. Dominant contrast was found to be a viable metric for street lighting design and night time visibility studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 854
Permanent link to this record
 

 
Author (down) Sandeva, V.; Despot, K.
Title The effects of lighting exterior and interior design Type Journal Article
Year 2017 Publication Innovation and Entrepreneurship Abbreviated Journal Innovation and Entrepreneurship
Volume 5 Issue 1 Pages 10-20
Keywords lighting; interior lighting; exterior lighting; design; space
Abstract Light, whether natural or artificial is a very important element in interior and exterior design. It actually helps us to see color because color is visible to our eye because the substances of which was obtained reflect wavelengths of light. Light as an element of design influences other elements. It can make the space large or small, showy and bright or dark and unpleasant. Places that are well-lit with clean, clear light make the space seem larger, while the fading light and shadows

that fall on the walls create a sense of enclosed space. The light can change the color of the visible identity by color and type of light that falls on the surface.
Address Goce Delcev University – Stip, Department of Architecture and Design, R. Macedonia; vaska.sandeva(at)ugd.edu.mk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1654
Permanent link to this record