Records |
Author |
Ayuga, C.E.T.; Zamorano, J. |
Title |
LICA AstroCalc, a software to analyze the impact of artificial light: Extracting parameters from the spectra of street and indoor lamps |
Type |
Journal Article |
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Volume |
214 |
Issue |
|
Pages |
33-38 |
Keywords |
Vision; Lighting; Instrumentation |
Abstract |
The night sky spectra of light-polluted areas is the result of the artificial light scattered back from the atmosphere and the reemission of the light after reflections in painted surfaces. This emission comes mainly from street and decorative lamps. We have built an extensive database of lamps spectra covering from UV to near IR and the software needed to analyze them. We describe the LICA-AstroCalc free software that is a user friendly GUI tool to extract information from our database spectra or any other user provided spectrum. The software also includes the complete color database of paints from NCS comprising 1950 types. This helps to evaluate how different colors modify the reflected spectra from different lamps. All spectroscopic measurements have been validated with recommendations from CIELAB and ISO from NCS database. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number  |
GFZ @ kyba @ |
Serial |
1882 |
Permanent link to this record |
|
|
|
Author |
Llido Escriva, D.M.; Torres-Sospedra, J.; Berlanga-Llavori, R. |
Title |
Smart Outdoor Light Desktop Central Management System |
Type |
Journal Article |
Year |
2018 |
Publication |
IEEE Intelligent Transportation Systems Magazine |
Abbreviated Journal |
IEEE Intell. Transport. Syst. Mag. |
Volume |
10 |
Issue |
2 |
Pages |
58-68 |
Keywords |
Lighting |
Abstract |
Light pollution and nature preservation, are new trends in which the European cities are involved as they evolve into Smart Cities. Internet of Things are changing the way that sensors and management control systems are designed and implemented. In this article, our main objective is to present an Outdoor Light Desktop Central Management architecture using current IoT (Internet of Things) and GIS technologies to improve the energy efficiency, user experience and safety feeling at the same time we are going to decrease light pollution of LED lamps. The challenge is to provide a lighting control system to suit each zone, from residential areas and public spaces to industrial parks, and each context. Furthermore, the design of the technological multi-platform able to operate with any kind of electrical device will be useful in the area of outdoor lighting. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1939-1390 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number  |
GFZ @ kyba @ |
Serial |
1883 |
Permanent link to this record |
|
|
|
Author |
Dimovski, A.M.; Robert, K.A. |
Title |
Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal |
Type |
Journal Article |
Year |
2018 |
Publication |
Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology |
Abbreviated Journal |
J Exp Zool A Ecol Integr Physiol |
Volume |
329 |
Issue |
8-9 |
Pages |
497-505 |
Keywords |
Animals; Lighting |
Abstract |
The focus of sustainable lighting tends to be on reduced CO2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m(2) ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m(2) ), and no lighting (irradiance from sky glow < 0.37 x 10(-3) W/m(2) ), on melatonin production, lipid peroxidation, and circulating antioxidant capacity in the tammar wallaby (Macropus eugenii). Night-time melatonin and oxidative status were determined at baseline and again following 10 weeks exposure to light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts. |
Address |
Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Australia |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2471-5638 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:29722167 |
Approved |
no |
Call Number  |
GFZ @ kyba @ |
Serial |
1888 |
Permanent link to this record |
|
|
|
Author |
Willett, S. |
Title |
How many bioluminescent insects would be needed to produce the same level of light pollution as London? |
Type |
Journal Article |
Year |
2017 |
Publication |
Journal of Interdisciplinary Science Topics |
Abbreviated Journal |
|
Volume |
7 |
Issue |
|
Pages |
|
Keywords |
Remote Sensing; Lighting; Animals |
Abstract |
This paper determines how many light emitting Pyrophorus noctilucus would be required to produce the same level of light, and so the same amount of light pollution, as London. It was determined that if one P. noctilucos emitted 0.00153 lumens, it would take 2.940x1011 of them to produce the 449x106 lumen emitted by London. This number of bugs equates to an area of approximately 1.911x108 m2 which is 8 times smaller than the size of London. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number  |
GFZ @ kyba @ |
Serial |
1892 |
Permanent link to this record |
|
|
|
Author |
Meier; J.M. |
Title |
Temporal Profiles of Urban Lighting: Proposal for a research design and first results from three sites in Berlin |
Type |
Journal Article |
Year |
2018 |
Publication |
International Journal of Sustainable Lighting |
Abbreviated Journal |
|
Volume |
20 |
Issue |
|
Pages |
11-28 |
Keywords |
Instrumentation; Lighting; Society |
Abstract |
This paper presents and experimentally applies a research design for studying the temporal dimension of outdoor artificial illumination in complex lightscapes such as those of urban centres. It contributes to filling the gap between analyses of high-resolution aerial imagery, which provide detailed but static information on the spatial composition of lightscapes, and existing methods for studying their dynamics, which measure changes at high levels of aggregation. The research design adopts a small-scale, detailed approach by using close-range time-lapse videos to document the on/off patterns of individual light sources as the night progresses. It provides a framework and vocabulary for discrete and comparative analyses of the identified temporal profiles of lighting. This allows for pinpointing similarities and differences among the dynamics of different places, nights or categories of lighting. Its application to three case studies in Berlin indicate that switch-on and switch-off times are clustered, resulting in static and dynamic phases of the night. Midnight is a temporal fault-line, after which full illumination ends as portions of the illumination are extinguished. Switch-off times and -rates differ among the three lightscapes and, especially, among four functional types of lighting that were differentiated: infrastructural and commercial units largely remain on all night, while substantial portions of architectural and indoor lighting are switched off, though at fairly different times. Such findings are valuable for studies based on data collected at specific points in time (aerial imagery, measurements), for informing and monitoring temporally oriented lighting policies, and for understanding urban dynamics at large. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number  |
GFZ @ kyba @ |
Serial |
1901 |
Permanent link to this record |