|   | 
Details
   web
Records
Author Hale, J.D.; Davies, G.; Fairbrass, A.J.; Matthews, T.J.; Rogers, C.D.F.; Sadler, J.P.
Title Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 5 Pages e61460
Keywords *Cities; England; Environmental Pollution; Geographic Mapping; Humans; Light; *Lighting; Photography; Urban Population; *Urbanization
Abstract Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.
Address School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham, West Midlands, United Kingdom. j.hale@bham.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference (down)
Notes PMID:23671566; PMCID:PMC3646000 Approved no
Call Number IDA @ john @ Serial 209
Permanent link to this record
 

 
Author Vitta, P.; Dabasinskas, L.; Tuzikas, A.; Petrulis, A.; Meskauskas, D.; Zukauskas, A.
Title Concept of Intelligent Solid-State Street Lighting Technology Type Journal Article
Year 2012 Publication Electronics and Electrical Engineering Abbreviated Journal ElAEE
Volume 18 Issue 10 Pages
Keywords outdoor lighting; street lighting; LED; LED lighting; energy consumption; algorithm design and analysis; electromagnetic interference
Abstract Street and road lighting consumes about ~2 % of global electric power and the trade-off between energy saving and social needs for traffic safety, crime prevention, aesthetic comfort, etc. has to be established. A wide range investigation of an intelligent solid-state street lighting system prototype equipped with LED-based luminaires, motion sensors and microcontrollers with power-line-communication interfaces was performed under real outdoor conditions. The two-level and two-zone street illumination method was implemented basing on psychophysical investigation. The decrease of efficiency under the dimming conditions and significant electromagnetic interference in the frequency range of tens and hundreds MHz were identified as limiting factors of conventional current regulating ICs and the necessity of further improvement was pointed out.
Address Institute of Applied Research, Vilnius University, Sauletekio av. 9-III, LT-10222 Vilnius, Lithuania
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1392-1215 ISBN Medium
Area Expedition Conference (down)
Notes Approved no
Call Number IDA @ john @ Serial 329
Permanent link to this record
 

 
Author Huang, B.J.; Wu, M.S.; Hsu, P.C.; Chen, J.W.; Chen, K.Y.
Title Development of high-performance solar LED lighting system Type Journal Article
Year 2010 Publication Energy Conversion and Management Abbreviated Journal Energy Conversion and Management
Volume 51 Issue 8 Pages 1669-1675
Keywords Stand-alone solar system; Off-grid solar system; Solar-powered lighting; LED lighting; Solar LED lighting; LED; outdoor lighting
Abstract The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0196-8904 ISBN Medium
Area Expedition Conference (down)
Notes Approved no
Call Number IDA @ john @ Serial 330
Permanent link to this record
 

 
Author Meng, Y.; He, Z.; Yin, J.; Zhang, Y.; Zhang, T.
Title Quantitative calculation of human melatonin suppression induced by inappropriate light at night Type Journal Article
Year 2011 Publication Medical & Biological Engineering & Computing Abbreviated Journal Med Biol Eng Comput
Volume 49 Issue 9 Pages 1083-1088
Keywords Algorithms; Circadian Rhythm/physiology/*radiation effects; Humans; *Lighting; Melatonin/*secretion; *Models, Biological; Retinal Cone Photoreceptor Cells/physiology/radiation effects; Retinal Ganglion Cells/physiology/radiation effects; Retinal Rod Photoreceptor Cells/physiology/radiation effects
Abstract Melatonin (C(1)(3)H(1)(6)N(2)O(2)) has a wide range of functions in the body. When is inappropriately exposed to light at night, human circadian rhythm will be interfered and then melatonin secretion will become abnormal. For nearly three decades great progresses have been achieved in analytic action spectra and melatonin suppression by various light conditions. However, so far few articles focused on the quantitative calculation of melatonin suppression induced by light. In this article, an algorithm is established, in which all the contributions of rods, cones, and intrinsically photosensitive retinal ganglion cells are considered. Calculation results accords with the experimental data in references very well, which indicate the validity of this algorithm. This algorithm can also interpret the rule of melatonin suppression varying with light correlated color temperature very well.
Address Photonics Research Center, School of Physics, Nankai University, Tianjin 300071, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-0118 ISBN Medium
Area Expedition Conference (down)
Notes PMID:21717231 Approved no
Call Number IDA @ john @ Serial 236
Permanent link to this record
 

 
Author Behar-Cohen, F.; Martinsons, C.; Vienot, F.; Zissis, G.; Barlier-Salsi, A.; Cesarini, J.P.; Enouf, O.; Garcia, M.; Picaud, S.; Attia, D.
Title Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Type Journal Article
Year 2011 Publication Progress in Retinal and eye Research Abbreviated Journal Prog Retin Eye Res
Volume 30 Issue 4 Pages 239-257
Keywords Animals; Biomass; Circadian Rhythm/physiology; Environmental Exposure; Eye Diseases/*etiology/pathology/physiopathology; Humans; *Light/adverse effects; Lighting/*methods; Reflex, Pupillary/physiology; Retina/pathology; Risk Assessment; *Semiconductors; Time Factors
Abstract Light-emitting diodes (LEDs) are taking an increasing place in the market of domestic lighting because they produce light with low energy consumption. In the EU, by 2016, no traditional incandescent light sources will be available and LEDs may become the major domestic light sources. Due to specific spectral and energetic characteristics of white LEDs as compared to other domestic light sources, some concerns have been raised regarding their safety for human health and particularly potential harmful risks for the eye. To conduct a health risk assessment on systems using LEDs, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), a public body reporting to the French Ministers for ecology, for health and for employment, has organized a task group. This group consisted physicists, lighting and metrology specialists, retinal biologist and ophthalmologist who have worked together for a year. Part of this work has comprised the evaluation of group risks of different white LEDs commercialized on the French market, according to the standards and found that some of these lights belonged to the group risk 1 or 2. This paper gives a comprehensive analysis of the potential risks of white LEDs, taking into account pre-clinical knowledge as well as epidemiologic studies and reports the French Agency's recommendations to avoid potential retinal hazards.
Address Inserm UMRS 872, Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France. Francine.behar-cohen@crc.jussieur.fr
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-9462 ISBN Medium
Area Expedition Conference (down)
Notes PMID:21600300 Approved no
Call Number IDA @ john @ Serial 240
Permanent link to this record