|
Records |
Links |
|
Author |
Rowse, E.G.; Harris, S.; Jones, G. |

|
|
Title |
The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights |
Type |
Journal Article |
|
Year |
2016 |
Publication |
PloS one |
Abbreviated Journal |
PLoS One |
|
|
Volume |
11 |
Issue |
3 |
Pages  |
e0150884 |
|
|
Keywords |
Animals; bats; England; United Kingdom; low-pressure sodium; LPS; LED; LED lighting; ecology; urban ecology; Feeding Behavior |
|
|
Abstract |
We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum 'white' light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these 'light-intolerant' bat species. |
|
|
Address |
School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom; liz.rowse(at)bristol.ac.uk |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
PLOS |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1932-6203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:27008274 |
Approved |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
1403 |
|
Permanent link to this record |
|
|
|
|
Author |
Ardavani, O.; Zerefos, S.; Doulos, L.T. |

|
|
Title |
Redesigning the exterior lighting as part of the urban landscape: The role of transgenic bioluminescent plants in mediterranean urban and suburban lighting environments |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Journal of Cleaner Production |
Abbreviated Journal |
Journal of Cleaner Production |
|
|
Volume |
242 |
Issue |
|
Pages  |
118477 |
|
|
Keywords |
Plants; Lighting |
|
|
Abstract |
This research discusses the feasibility of replacing or supporting artificial lighting with Transgenic Bioluminescent Plants (TBP), as a means of minimizing light pollution, reducing electrical energy consumption and de-carbonizing urban and suburban outdoor environments, creating sustainable conditions and enriching the quality of life. Until now, no information is given about the light output of any TBPs and the question “Are the TBPs capable of producing the necessary lighting levels for exterior lighting?” is unanswered. For this reason, a new methodology is proposed for selecting and analyzing the lighting output potential of transgenic plants ted for specific climatic conditions. This methodology considers growth and reduction factors, as well as a formulae for estimating the plants’ luminous output by performing light measurements. Results show that transgenic plants in medium growth can emit a median luminous flux of up to 57 lm, a value that can definitely support low lighting requirements when used in large numbers of plants. From the lighting measurements and calculations performed in this research, the light output of the TBPs for a typical road with 5m width was found equal to 2lx. The amount of plants required was 40 at each side of the road for every 30m of streets with P6 road class. The results show that the use of bioluminescent plants can actually contribute to the reduction of energy consumption, concerning only the lighting criterium, thus creating an enormous opportunity for a new state-of- the-art market and research that could potentially minimize CO2 emissions and light pollution, improve urban and suburban microclimate, mitigate the effects of climate change, as well as provide an alternative means of lighting affecting both outdoor lighting design and landscape planning in suburban and urban settings. Moreover, further research should be applied considering also other possible ecological impacts before applying TBPs for exterior lighting applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0959-6526 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2711 |
|
Permanent link to this record |
|
|
|
|
Author |
Lin, C.-F.; Tsai, T.-Y.; Chen, K.-Y.; Shen, P.-C. |

|
|
Title |
Efficient warm-white lighting using rare-earth-element-free fluorescent materials for saving energy, environment protection and human health |
Type |
Journal Article |
|
Year |
2016 |
Publication |
RSC Adv. |
Abbreviated Journal |
RSC Adv. |
|
|
Volume |
6 |
Issue |
113 |
Pages  |
111959-111965 |
|
|
Keywords |
Lighting |
|
|
Abstract |
Solid-state white light emission is important for energy saving, but currently it is mainly based on environmentally unfriendly rare-earth doped phosphors or cadmium-containing quantum dots. Here, we explore an environmentally friendly approach for efficient white light emission based on ZnSe:Mn nanoparticles without rare-earth or cadmium elements. The emission is composed of a broad green-orange spectral band (525â650 nm) with the peak located at 578 nm and the color temperature is low, so it is particularly good for lighting at night to reduce risks to human health. Furthermore, the optimal absorption peak could be designed at 453 nm, which well matches the commercial blue-LED emission wavelength (445â470 nm). A quantum yield up to 84.5% could also be achieved. This rare-earth-element-free material opens up a new avenue for energy-saving, healthy, and environmentally benign lighting. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2046-2069 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @ |
Serial |
1566 |
|
Permanent link to this record |
|
|
|
|
Author |
Clarke, R.B.; Amini, H.; James, P.; von Euler-Chelpin, M.; Jorgensen, J.T.; Mehta, A.; Cole-Hunter, T.; Westendorp, R.; Mortensen, L.H.; Loft, S.; Brandt, J.; Hertel, O.; Ketzel, M.; Backalarz, C.; Andersen, Z.J.; Lim, Y.-H. |

|
|
Title |
Outdoor light at night and breast cancer incidence in the Danish Nurse Cohort |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Environmental Research |
Abbreviated Journal |
Environ Res |
|
|
Volume |
194 |
Issue |
|
Pages  |
110631 |
|
|
Keywords |
Human health; Remote sensing; Breast neoplasms; Environmental exposure; Female; Incidence; Lighting; Middle-aged; Prospective studies; Risk factors |
|
|
Abstract |
BACKGROUND: Knowledge of the role of melatonin, xenograft experiments, and epidemiological studies suggests that exposure to light at night (LAN) may disturb circadian rhythms, possibly increasing the risk of developing breast cancer. OBJECTIVES: We examined the association between residential outdoor LAN and the incidence of breast cancer: overall and subtypes classified by estrogen (ER) and progesterone (PR) receptor status. METHODS: We used data on 16,941 nurses from the Danish Nurse Cohort who were followed-up from the cohort baseline in 1993 or 1999 through 2012 in the Danish Cancer Registry for breast cancer incidence and the Danish Breast Cancer Cooperative Group for breast cancer ER and PR status. LAN exposure data were obtained from the U.S. Defense Meteorological Satellite Program (DMSP) available for 1996, 1999, 2000, 2003, 2004, 2006, and 2010 in nW/cm(2)/sr unit, and assigned to the study participants' residence addresses during the follow-up. Time-varying Cox regression models were used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between LAN and breast cancer, adjusting for individual characteristics, road traffic noise, and air pollution. RESULTS: Of 16,941 nurses, 745 developed breast cancer in total during 320,289 person-years of follow-up. We found no association between exposure to LAN and overall breast cancer. In the fully adjusted models, HRs for the highest (65.8-446.4 nW/cm(2)/sr) and medium (22.0-65.7 nW/cm(2)/sr) LAN tertiles were 0.97 (95% CI: 0.77, 1.23) and 1.09 (95% CI: 0.90, 1.31), respectively, compared to the lowest tertile of LAN exposure (0-21.9 nW/cm(2)/sr). We found a suggestive association between LAN and ER-breast cancer. CONCLUSION: This large cohort study of Danish female nurses suggests weak evidence of the association between LAN and breast cancer incidence. |
|
|
Address |
Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Seoul National University Medical Research Center, Seoul, Republic of Korea. Electronic address: younhee.lim@sund.ku.dk |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0013-9351 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:33345898 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
3256 |
|
Permanent link to this record |
|
|
|
|
Author |
Bouroussis, C.A.; Topalis, F.V. |

|
|
Title |
Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems – The concept of the drone-gonio-photometer |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
|
|
Volume |
253 |
Issue |
|
Pages  |
107155 |
|
|
Keywords |
Instrumentation; Lighting |
|
|
Abstract |
This paper presents the ongoing work of the lighting laboratory to develop a standardized method for the measurement of several types of lighting installations using unmanned aircraft systems. The technology of unmanned aircraft systems can incorporate multiple types of sensors and can be programmed to fly in predefined areas and routes in order to perform complex measurements with limited human intervention. This technology provides the freedom of measurements from several angular positions and altitudes in a fast, easy, accurate and repeatable way. The overall aim of this work is to assess the lighting installations, not only against the applicable lighting standards but also to investigate and reveal issues related to light pollution and obtrusive lighting. The latter are issues that in most cases are neglected due to the lack of standardized methods of calculation and measurement. Current assessment methods require illuminance or luminance measurements of horizontal and vertical surfaces generally from the ground. The proposed approach provides a holistic three-dimensional evaluation of the lighting installations beyond the common methods and geometries and opens the discussion for future update of the relevant standards on outdoor lighting. In the scope of this paper, several proof-of-concept cases are presented. |
|
|
Address |
Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, 15780, Zografou, Athens, Greece; bouroussis(at)gmail.com |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2996 |
|
Permanent link to this record |