toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Babadi, S.; Ramirez-Inguiez, R.; Boutaleb, T.; Mallick, T. url  doi
openurl 
  Title Producing uniform illumination within a rectangular area by using a nonimaging optic Type Journal Article
  Year 2018 Publication Applied Optics Abbreviated Journal Appl. Opt.  
  Volume 57 Issue 31 Pages (down) 9357  
  Keywords Lighting  
  Abstract This paper proposes a new design method to create a novel optical element to generate uniform illumination within a rectangular area. Based on this model, an illuminated area is irradiated by two sets of rays; the first one irradiates the target plane after refraction from the top section of the lens, and the second one irradiates from the reflection at the side profile of the lens and then from refraction at the top part of the lens. The results show that a uniformity of over 90% can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1559-128X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2046  
Permanent link to this record
 

 
Author Zukauskas, A.; Vaicekauskas, R.; Vitta, P. url  doi
openurl 
  Title Optimization of solid-state lamps for photobiologically friendly mesopic lighting Type Journal Article
  Year 2012 Publication Applied Optics Abbreviated Journal Appl Opt  
  Volume 51 Issue 35 Pages (down) 8423-8432  
  Keywords Lighting Systems; Circadian Rhythm; Color; Equipment Design; Humans; Light; *Lighting; Melatonin/metabolism; Photobiology/*methods; Semiconductors; Time Factors; Vision, Ocular  
  Abstract The circadian and visual-performance-based mesopic systems of photometry were applied for the optimization of the spectral power distributions (SPDs) of the solid-state sources of light for low-illuminance lighting applications. At mesopic adaptation luminances typical of outdoor lighting (0.1-2 cd/m(2)), the optimal SPDs were obtained through the minimization of the mesopic circadian action factor, which is the ratio of the circadian efficacy of radiation to mesopic luminous efficacy of radiation. For correlated color temperatures below ~3000 K, the optimized dichromatic light-emitting diodes (LEDs) are shown to pose a lower circadian hazard than high-pressure sodium lamps and common warm white LEDs; also they are potentially more efficacious and have acceptable color rendition properties under mesopic conditions.  
  Address Institute of Applied Research, Vilnius University, Sauletekio al. 9-III, Vilnius LT-10222, Lithuania. arturas.zukauskas@ff.vu.lt  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6935 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23262538 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 448  
Permanent link to this record
 

 
Author Wakefield, A.; Broyles, M.; Stone, E.L.; Jones, G.; Harris, S. url  doi
openurl 
  Title Experimentally comparing the attractiveness of domestic lights to insects: Do LEDs attract fewer insects than conventional light types? Type Journal Article
  Year 2016 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume 6 Issue 22 Pages (down) 8028-8036  
  Keywords ecology; Lighting  
  Abstract LED lighting is predicted to constitute 70% of the outdoor and residential lighting markets by 2020. While the use of LEDs promotes energy and cost savings relative to traditional lighting technologies, little is known about the effects these broad-spectrum “white” lights will have on wildlife, human health, animal welfare, and disease transmission. We conducted field experiments to compare the relative attractiveness of four commercially available “domestic” lights, one traditional (tungsten filament) and three modern (compact fluorescent, “cool-white” LED and “warm-white” LED), to aerial insects, particularly Diptera. We found that LEDs attracted significantly fewer insects than other light sources, but found no significant difference in attraction between the “cool-” and “warm-white” LEDs. Fewer flies were attracted to LEDs than alternate light sources, including fewer Culicoides midges (Diptera: Ceratopogonidae). Use of LEDs has the potential to mitigate disturbances to wildlife and occurrences of insect-borne diseases relative to competing lighting technologies. However, we discuss the risks associated with broad-spectrum lighting and net increases in lighting resulting from reduced costs of LED technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1541  
Permanent link to this record
 

 
Author Price, B.; Baker, E. url  doi
openurl 
  Title NightLife: A cheap, robust, LED based light trap for collecting aquatic insects in remote areas Type Journal Article
  Year 2016 Publication Biodiversity Data Journal Abbreviated Journal Bdj  
  Volume 4 Issue Pages (down) e7648  
  Keywords Animals; Ecology; Lighting  
  Abstract Background

There are approximately one hundred thousand aquatic insect species currently known to science and this figure is likely a significant underestimation. The ecology of aquatic insect groups has been studied due to their role as bioindicators of water quality and in the case of Diptera, their role as vectors of disease. Light trapping targets emergent adults, using mercury vapour bulbs or actinic fluorescent tubes, however these light sources are unsuitable for sampling remote regions due to their power requirements, which limit their mobility. Most insects studied have three types of photoreceptors corresponding to UV, blue and green light.

New information

We describe the NightLife: a cheap, robust, portable, LED based light source which targets insect trichromatic vision, is capable of autonomous operation and is powered by a single AA battery. Field trials show that the NightLife is capable of collecting sufficient samples of 12 insect orders, including all aquatic orders commonly collected by traditional light trapping and compares favourably with actinic fluorescent tubes and white LEDs. Future development in LED technology will likely result in LEDs replacing traditional light sources for collecting insects more widely.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1314-2836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1398  
Permanent link to this record
 

 
Author Lin, J.; Ding, X.; Hong, C.; Pang, Y.; Chen, L.; Liu, Q.; Zhang, X.; Xin, H.; Wang, X. url  doi
openurl 
  Title Several biological benefits of the low color temperature light-emitting diodes based normal indoor lighting source Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages (down) 7560  
  Keywords Human Health; Lighting  
  Abstract Currently, light pollution has become a nonnegligible issue in our daily life. Artificial light sources with high color temperature were deem to be the major pollution source, which could induce several adverse effects on human's health. In our previous research, we have firstly developed an artificial indoor light with low color temperature (1900 K). However, the biological effects of this artificial light on human's health are unclear. Here, four artificial lights (1900 K, 3000 K, 4000 K and 6600 K) were used to evaluate some biological changes in both human (in total 152 person-times) and murine models. Compared with other three high color temperature artificial lights, our lights (1900 K) presented a positive effect on promoting the secreting of melatonin and glutamate, protecting human's eyes, accelerating would healing and hair regeneration. These systematical studies indicated that the proposed low color temperature (1900 K) light could provide several significant benefits in human's daily life.  
  Address The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China. wangxiaolei@ncu.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31101840 Approved no  
  Call Number GFZ @ kyba @ Serial 2501  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: