toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Elvidge, C.D.; Keith, D.M.; Tuttle, B.T.; Baugh, K.E. url  doi
openurl 
  Title Spectral identification of lighting type and character Type Journal Article
  Year 2010 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 10 Issue 4 Pages (down) 3961-3988  
  Keywords Led; Nightsat; lighting efficiency; lighting types; nighttime lights; photopic band  
  Abstract We investigated the optimal spectral bands for the identification of lighting types and the estimation of four major indices used to measure the efficiency or character of lighting. To accomplish these objectives we collected high-resolution emission spectra (350 to 2,500 nm) for forty-three different lamps, encompassing nine of the major types of lamps used worldwide. The narrow band emission spectra were used to simulate radiances in eight spectral bands including the human eye photoreceptor bands (photopic, scotopic, and “meltopic”) plus five spectral bands in the visible and near-infrared modeled on bands flown on the Landsat Thematic Mapper (TM). The high-resolution continuous spectra are superior to the broad band combinations for the identification of lighting type and are the standard for calculation of Luminous Efficacy of Radiation (LER), Correlated Color Temperature (CCT) and Color Rendering Index (CRI). Given the high cost that would be associated with building and flying a hyperspectral sensor with detection limits low enough to observe nighttime lights we conclude that it would be more feasible to fly an instrument with a limited number of broad spectral bands in the visible to near infrared. The best set of broad spectral bands among those tested is blue, green, red and NIR bands modeled on the band set flown on the Landsat Thematic Mapper. This set provides low errors on the identification of lighting types and reasonable estimates of LER and CCT when compared to the other broad band set tested. None of the broad band sets tested could make reasonable estimates of Luminous Efficacy (LE) or CRI. The photopic band proved useful for the estimation of LER. However, the three photoreceptor bands performed poorly in the identification of lighting types when compared to the bands modeled on the Landsat Thematic Mapper. Our conclusion is that it is feasible to identify lighting type and make reasonable estimates of LER and CCT using four or more spectral bands with minimal spectral overlap spanning the 0.4 to 1.0 um region.  
  Address Earth Observation Group, Solar and Terrestrial Division, NOAA National Geophysical Data Center, 325 Broadway, Boulder, CO 80305, USA. chris.elvidge@noaa.gov  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22319336; PMCID:PMC3274255 Approved no  
  Call Number IDA @ john @ Serial 275  
Permanent link to this record
 

 
Author Sȩdziwy, A.; Basiura, A.; Wojnicki, I. url  doi
openurl 
  Title Roadway Lighting Retrofit: Environmental and Economic Impact of Greenhouse Gases Footprint Reduction Type Journal Article
  Year 2018 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 10 Issue 11 Pages (down) 3925  
  Keywords Economics; Lighting  
  Abstract Roadway lighting retrofit is a process continuously developed in urban environments due to both installation aging and technical upgrades. The spectacular example is replacing the high intensity discharge (HID) lamps, usually high pressure sodium (HPS) ones, with the sources based on light-emitting diodes (LED). The main focus in the related research was put on energy efficiency of installations and corresponding financial benefits. In this work, we extend those considerations analyzing how lighting optimization impacts greenhouse gas (GHG) emission reduction and what are the resultant financial benefits expressed in terms of emission allowances prices. Our goal is twofold: (i) obtaining a quantitative assessment of how a GHG footprint depends on a technological scope of modernization of a city HPS-based lighting system; and (ii) showing that the costs of such a modernization can be decreased by up to 10% thanks to a lowered CO 2 emission volume. Moreover, we identify retrofit patterns yielding the most substantial environmental impact.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2772  
Permanent link to this record
 

 
Author Ernst, S.; Łabuz, M.; Środa, K.; Kotulski, L. url  doi
openurl 
  Title Graph-Based Spatial Data Processing and Analysis for More Efficient Road Lighting Design Type Journal Article
  Year 2018 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 10 Issue 11 Pages (down) 3850  
  Keywords Lighting  
  Abstract The efficiency and affordability of modern street lighting equipment are improving quickly, but systems used to manage and design lighting installations seem to lag behind. One of their problems is the lack of consistent methods to integrate all relevant data. Tools used to manage lighting infrastructure are not aware of the geographic characteristics of the lit areas, and photometric calculation software requires a lot of manual editing by the designer, who needs to assess the characteristics of roads, define the segments, and assign the lighting classes according to standards. In this paper, we propose a graph-based method to integrate geospatial data from various sources to support the process of data preparation for photometric calculations. The method uses graph transformations to define segments and assign lighting classes. A prototype system was developed to conduct experiments using real-world data. The proposed approach is compared to results obtained by professional designers in a case study; the method was also applied to several European cities to assess its efficiency. The obtained results are much more fine-grained than those yielded by the traditional approach; as a result, the lighting is more adequate, especially when used in conjunction with automated optimisation tools.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2051  
Permanent link to this record
 

 
Author Fonken, L.K.; Lieberman, R.A.; Weil, Z.M.; Nelson, R.J. url  doi
openurl 
  Title Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice Type Journal Article
  Year 2013 Publication Endocrinology Abbreviated Journal Endocrinology  
  Volume 154 Issue 10 Pages (down) 3817-3825  
  Keywords Adipose Tissue, White/*immunology/metabolism/pathology; Animals; Antigens, CD11b/biosynthesis/genetics/metabolism; Appetite Regulation/*radiation effects; Arcuate Nucleus/*immunology/metabolism/pathology; Behavior, Animal/radiation effects; Circadian Rhythm; Cytokines/biosynthesis/genetics/metabolism; Diet, High-Fat/*adverse effects; Feeding Behavior/radiation effects; Gene Expression Regulation; Glucose Intolerance/etiology/immunology/metabolism/pathology; I-kappa B Kinase/biosynthesis/genetics/metabolism; Insulin Resistance; Lighting/*adverse effects; Male; Mice; Microglia/immunology/metabolism/pathology; Nerve Tissue Proteins/biosynthesis/genetics/metabolism; Obesity/*etiology/immunology/metabolism/pathology; Random Allocation; *Weight Gain  
  Abstract Elevated nighttime light exposure is associated with symptoms of metabolic syndrome. In industrialized societies, high-fat diet (HFD) and exposure to light at night (LAN) often cooccur and may contribute to the increasing obesity epidemic. Thus, we hypothesized that dim LAN (dLAN) would provoke additional and sustained body mass gain in mice on a HFD. Male mice were housed in either a standard light/dark cycle or dLAN and fed either chow or HFD. Exposure to dLAN and HFD increase weight gain, reduce glucose tolerance, and alter insulin secretion as compared with light/dark cycle and chow, respectively. The effects of dLAN and HFD appear additive, because mice exposed to dLAN that were fed HFD display the greatest increases in body mass. Exposure to both dLAN and HFD also change the timing of food intake and increase TNFalpha and MAC1 gene expression in white adipose tissue after 4 experimental weeks. Changes in MAC1 gene expression occur more rapidly due to HFD as compared with dLAN; after 5 days of experimental conditions, mice fed HFD already increase MAC1 gene expression in white adipose tissue. HFD also elevates microglia activation in the arcuate nucleus of the hypothalamus and hypothalamic TNFalpha, IL-6, and Ikbkb gene expression. Microglia activation is increased by dLAN, but only among chow-fed mice and dLAN does not affect inflammatory gene expression. These results suggest that dLAN exaggerates weight gain and peripheral inflammation associated with HFD.  
  Address Department of Neuroscience, Wexner Medical Center, The Ohio State University, 636 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-7227 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23861373 Approved no  
  Call Number IDA @ john @ Serial 93  
Permanent link to this record
 

 
Author Gao, X.; Li, X.; Zhang, M.; Chi, L.; Song, C.; Liu, Y. url  doi
openurl 
  Title Effects of LED light quality on the growth, survival and metamorphosis ofHaliotis discus hannaiIno larvae Type Journal Article
  Year 2016 Publication Aquaculture Research Abbreviated Journal Aquac Res  
  Volume 47 Issue 12 Pages (down) 3705–3717  
  Keywords Animals; Haliotis discus hannai Ino; larva; LED light quality; initial stage of lighting; embryonic development; abalone; photobiology  
  Abstract Light is a key environmental factor influencing the growth, development and survival of aquatic organisms. We examined the effects of different light qualities (red, orange, white, blue, green or no light) and developmental stage at initial lighting [fertilized egg (FE), trochophore larva (TL), or eye-spot larva (EL)] on the growth, development, and survival of larvae of the Pacific abalone Haliotis discus hannai Ino. Larva-hatching success was significantly higher under blue, green, or no light compared with red, orange or white light (P < 0.05). Larval abnormalities were significantly increased under red, orange or white light compared with all other light qualities (P < 0.05). The incidence of metamorphosis in larvae illuminated from the TL stage was significantly higher under blue compared with other light qualities. Irrespective of the stage at initial illumination, the incidence of metamorphosis was lower in larvae cultured under red, orange or no light compared with other light qualities, but the differences were not significant (P > 0.05). Juvenile survival was significantly higher under blue or green compared with other light qualities (P < 0.05), with no significant effect of stage at initial illumination (P > 0.05). Larval size at completion of the shell was unaffected by stage at initial illumination, but was greater under blue or green light, while size at metamorphosis was greatest following illumination with blue or green light since the TL or EL stage (P < 0.05). Metamorphosis time was shortest with blue or green light and in cultures illuminated from the FE or TL stage (P < 0.05). Larval development from the FE to formation of the fourth tubule on the cephalic tentacles was fastest in larvae exposed since the FE or TL stage to blue or green light, compared with other light qualities (P < 0.05). However, there was no difference in terms of the rate of development from the FE to the TL stage between cultures lit or unlit since the FE egg stage (P > 0.05). These results suggest that a blue or green light source applied from the TL stage can increase the hatching and yield of H. discus hannai Ino, with important implications for the development of the aquaculture industry.  
  Address Research and Development Center of Marine Biotechnology, Institute of Oceanology, Chinese Academy of Science, 7 Nanhai Road, Qingdao 266071, Shandong Province, China; 18354292961(at)163.com.  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1355557X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1340  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: