|   | 
Details
   web
Records
Author Kyba, C.C.M.; Hänel, A.; Hölker, F.
Title Redefining efficiency for outdoor lighting Type Journal Article
Year 2014 Publication Energy & Environmental Science Abbreviated Journal Energy Environ. Sci.
Volume 7 Issue 6 Pages 1806
Keywords (up) *Lighting; outdoor lighting; luminous efficiency; lighting standards; public policy; illuminance; street lighting
Abstract Improvements in the luminous efficiency of outdoor lamps might not result in energy savings or reductions in greenhouse gas emissions. The reason for this is a rebound effect: when light becomes cheaper, many users will increase illumination, and some previously unlit areas may become lit. We present three policy recommendations that work together to guarantee major energy reductions in street lighting systems. First, taking advantage of new technologies to use light only when and where it is needed. Second, defining maximum permitted illuminances for roadway lighting. Third, defining street lighting system efficiency in terms of kilowatt hours per kilometer per year. Adoption of these policies would not only save energy, but would greatly reduce the amount of light pollution produced by cities. The goal of lighting policy should be to provide the light needed for any given task while minimizing both the energy use and negative environmental side effects of the light.
Address Leibniz Institute of Freshwater Ecology and Inland Fisheries, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 244
Permanent link to this record
 

 
Author Wanvik, P.O.
Title Effects of road lighting: an analysis based on Dutch accident statistics 1987-2006 Type Journal Article
Year 2009 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 41 Issue 1 Pages 123-128
Keywords (up) Accidents, Traffic/*statistics & numerical data; Automobile Driving/*statistics & numerical data; Confidence Intervals; Cross-Sectional Studies; Humans; *Lighting; Netherlands; Odds Ratio; Risk Factors; Safety; *Visual Fields
Abstract This study estimates the safety effect of road lighting on accidents in darkness on Dutch roads, using data from an interactive database containing 763,000 injury accidents and 3.3 million property damage accidents covering the period 1987-2006. Two estimators of effect are used, and the results are combined by applying techniques of meta-analysis. Injury accidents are reduced by 50%. This effect is larger than the effects found in most of the earlier studies. The effect on fatal accidents is slightly larger than the effect on injury accidents. The effect during twilight is about 2/3 of the effect in darkness. The effect of road lighting is significantly smaller during adverse weather and road surface conditions than during fine conditions. The effects on pedestrian, bicycle and moped accidents are significantly larger than the effects on automobile and motorcycle accidents. The risk of injury accidents was found to increase in darkness. The average increase in risk was estimated to 17% on lit rural roads and 145% on unlit rural roads. The average increase in risk during rainy conditions is about 50% on lit rural roads and about 190% on unlit rural roads. The average increase in risk with respect to pedestrian accidents is about 140% on lit rural roads and about 360% on unlit rural roads.
Address Norwegian Public Roads Administration, Region South, Serviceboks 723, 4808 Arendal, Norway. per.wanvik@vegvesen.no
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:19114146 Approved no
Call Number IDA @ john @ Serial 250
Permanent link to this record
 

 
Author Fonken, L.K.; Lieberman, R.A.; Weil, Z.M.; Nelson, R.J.
Title Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice Type Journal Article
Year 2013 Publication Endocrinology Abbreviated Journal Endocrinology
Volume 154 Issue 10 Pages 3817-3825
Keywords (up) Adipose Tissue, White/*immunology/metabolism/pathology; Animals; Antigens, CD11b/biosynthesis/genetics/metabolism; Appetite Regulation/*radiation effects; Arcuate Nucleus/*immunology/metabolism/pathology; Behavior, Animal/radiation effects; Circadian Rhythm; Cytokines/biosynthesis/genetics/metabolism; Diet, High-Fat/*adverse effects; Feeding Behavior/radiation effects; Gene Expression Regulation; Glucose Intolerance/etiology/immunology/metabolism/pathology; I-kappa B Kinase/biosynthesis/genetics/metabolism; Insulin Resistance; Lighting/*adverse effects; Male; Mice; Microglia/immunology/metabolism/pathology; Nerve Tissue Proteins/biosynthesis/genetics/metabolism; Obesity/*etiology/immunology/metabolism/pathology; Random Allocation; *Weight Gain
Abstract Elevated nighttime light exposure is associated with symptoms of metabolic syndrome. In industrialized societies, high-fat diet (HFD) and exposure to light at night (LAN) often cooccur and may contribute to the increasing obesity epidemic. Thus, we hypothesized that dim LAN (dLAN) would provoke additional and sustained body mass gain in mice on a HFD. Male mice were housed in either a standard light/dark cycle or dLAN and fed either chow or HFD. Exposure to dLAN and HFD increase weight gain, reduce glucose tolerance, and alter insulin secretion as compared with light/dark cycle and chow, respectively. The effects of dLAN and HFD appear additive, because mice exposed to dLAN that were fed HFD display the greatest increases in body mass. Exposure to both dLAN and HFD also change the timing of food intake and increase TNFalpha and MAC1 gene expression in white adipose tissue after 4 experimental weeks. Changes in MAC1 gene expression occur more rapidly due to HFD as compared with dLAN; after 5 days of experimental conditions, mice fed HFD already increase MAC1 gene expression in white adipose tissue. HFD also elevates microglia activation in the arcuate nucleus of the hypothalamus and hypothalamic TNFalpha, IL-6, and Ikbkb gene expression. Microglia activation is increased by dLAN, but only among chow-fed mice and dLAN does not affect inflammatory gene expression. These results suggest that dLAN exaggerates weight gain and peripheral inflammation associated with HFD.
Address Department of Neuroscience, Wexner Medical Center, The Ohio State University, 636 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-7227 ISBN Medium
Area Expedition Conference
Notes PMID:23861373 Approved no
Call Number IDA @ john @ Serial 93
Permanent link to this record
 

 
Author Vollmer, C.; Michel, U.; Randler, C.
Title Outdoor light at night (LAN) is correlated with eveningness in adolescents Type Journal Article
Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 29 Issue 4 Pages 502-508
Keywords (up) Adolescent; *Adolescent Behavior/drug effects; Biological Clocks; Central Nervous System Stimulants/administration & dosage; *Circadian Rhythm/drug effects; Computers; Cross-Sectional Studies; Female; Germany; Humans; *Light; Lighting; Male; *Photic Stimulation; *Photoperiod; Questionnaires; *Sleep/drug effects; Television; Time Factors; Video Games; *Wakefulness/drug effects
Abstract External zeitgebers synchronize the human circadian rhythm of sleep and wakefulness. Humans adapt their chronotype to the day-night cycle, the strongest external zeitgeber. The human circadian rhythm shifts to evening-type orientation when daylight is prolonged into the evening and night hours by artificial light sources. Data from a survey of 1507 German adolescents covering questions about chronotype and electronic screen media use combined with nocturnal satellite image data suggest a relationship between chronotype and artificial nocturnal light. Adolescents living in brightly illuminated urban districts had a stronger evening-type orientation than adolescents living in darker and more rural municipalities. This result persisted when controlling for time use of electronic screen media, intake of stimulants, type of school, age, puberty status, time of sunrise, sex, and population density. Time spent on electronic screen media use-a source of indoor light at night-is also correlated with eveningness, as well as intake of stimulants, age, and puberty status, and, to a lesser degree, type of school and time of sunrise. Adequate urban development design and parents limiting adolescents' electronic screen media use in the evening could help to adjust adolescents' zeitgeber to early school schedules when they provide appropriate lighting conditions for daytime and for nighttime.
Address Department of Biology, University of Education Heidelberg, Germany. vollmer@ph-heidelberg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:22214237 Approved no
Call Number IDA @ john @ Serial 150
Permanent link to this record
 

 
Author Gooley, J.J.; Chamberlain, K.; Smith, K.A.; Khalsa, S.B.S.; Rajaratnam, S.M.W.; Van Reen, E.; Zeitzer, J.M.; Czeisler, C.A.; Lockley, S.W.
Title Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans Type Journal Article
Year 2011 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab
Volume 96 Issue 3 Pages E463-72
Keywords (up) Adolescent; Adult; Female; Humans; *Light; *Lighting; Male; Melatonin/*blood; Sleep/physiology; Time Factors; Young Adult
Abstract CONTEXT: Millions of individuals habitually expose themselves to room light in the hours before bedtime, yet the effects of this behavior on melatonin signaling are not well recognized. OBJECTIVE: We tested the hypothesis that exposure to room light in the late evening suppresses the onset of melatonin synthesis and shortens the duration of melatonin production. DESIGN: In a retrospective analysis, we compared daily melatonin profiles in individuals living in room light (<200 lux) vs. dim light (<3 lux). PATIENTS: Healthy volunteers (n = 116, 18-30 yr) were recruited from the general population to participate in one of two studies. SETTING: Participants lived in a General Clinical Research Center for at least five consecutive days. INTERVENTION: Individuals were exposed to room light or dim light in the 8 h preceding bedtime. OUTCOME MEASURES: Melatonin duration, onset and offset, suppression, and phase angle of entrainment were determined. RESULTS: Compared with dim light, exposure to room light before bedtime suppressed melatonin, resulting in a later melatonin onset in 99.0% of individuals and shortening melatonin duration by about 90 min. Also, exposure to room light during the usual hours of sleep suppressed melatonin by greater than 50% in most (85%) trials. CONCLUSIONS: These findings indicate that room light exerts a profound suppressive effect on melatonin levels and shortens the body's internal representation of night duration. Hence, chronically exposing oneself to electrical lighting in the late evening disrupts melatonin signaling and could therefore potentially impact sleep, thermoregulation, blood pressure, and glucose homeostasis.
Address Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA. gmsjjg@nus.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-972X ISBN Medium
Area Expedition Conference
Notes PMID:21193540; PMCID:PMC3047226 Approved no
Call Number IDA @ john @ Serial 139
Permanent link to this record