|   | 
Details
   web
Records
Author Kersavage, K.; Skinner, N.P.; Bullough, J.D.; Garvey, P.M.; Donnell, E.T.; Rea, M.S.
Title Investigation of flashing and intensity characteristics for vehicle-mounted warning beacons Type Journal Article
Year 2018 Publication (up) Accident Analysis & Prevention Abbreviated Journal Accident Analysis & Prevention
Volume 119 Issue Pages 23-28
Keywords Security; Public Safety; Lighting
Abstract Reducing the potential for crashes involving front line service workers and passing vehicles is important for increasing worker safety in work zones and similar locations. Flashing yellow warning beacons are often used to protect, delineate, and provide visual information to drivers within and approaching work zones. A nighttime field study using simulated workers, with and without reflective vests, present outside trucks was conducted to evaluate the effects of different warning beacon intensities and flash frequencies. Interactions between intensity and flash frequency were also analyzed. This study determined that intensitiesof 25/2.5 cd and 150/15 cd (peak/trough intensity) provided the farthest detection distances of the simulated worker. Mean detection distances in response to a flash frequency of 1 Hz were not statistically different from those in response to 4 Hz flashing. Simulated workers wearing reflective vests were seen the farthest distances away from the trucks for all combinations of intensity and flash frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1950
Permanent link to this record
 

 
Author Sullivan, J.M.; Flannagan, M.J.
Title The role of ambient light level in fatal crashes: inferences from daylight saving time transitions Type Journal Article
Year 2002 Publication (up) Accident Analysis & Prevention Abbreviated Journal Accident Analysis & Prevention
Volume 34 Issue 4 Pages 487-498
Keywords Public Safety; Lighting
Abstract The purpose of this study was to estimate the size of the influence of ambient light level on fatal pedestrian and vehicle crashes in three scenarios. The scenarios were: fatal pedestrian crashes at intersections, fatal pedestrian crashes on dark rural roads, and fatal single-vehicle run-off-road crashes on dark, curved roads. Each scenario's sensitivity to light level was evaluated by comparing the number of fatal crashes across changes to and from daylight saving time, within daily time periods in which an abrupt change in light level occurs relative to official clock time. The analyses included 11 years of fatal crashes in the United States, between 1987 and 1997. Scenarios involving pedestrians were most sensitive to light level, in some cases showing up to seven times more risk at night over daytime. In contrast, single-vehicle run-off-road crashes showed little difference between light and dark time periods, suggesting factors other than light level play the dominant role in these crashes. These results are discussed in the context of the possible safety improvements offered by new developments in adaptive vehicle headlighting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2126
Permanent link to this record
 

 
Author Wanvik, P.O.
Title Effects of road lighting: an analysis based on Dutch accident statistics 1987-2006 Type Journal Article
Year 2009 Publication (up) Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 41 Issue 1 Pages 123-128
Keywords Accidents, Traffic/*statistics & numerical data; Automobile Driving/*statistics & numerical data; Confidence Intervals; Cross-Sectional Studies; Humans; *Lighting; Netherlands; Odds Ratio; Risk Factors; Safety; *Visual Fields
Abstract This study estimates the safety effect of road lighting on accidents in darkness on Dutch roads, using data from an interactive database containing 763,000 injury accidents and 3.3 million property damage accidents covering the period 1987-2006. Two estimators of effect are used, and the results are combined by applying techniques of meta-analysis. Injury accidents are reduced by 50%. This effect is larger than the effects found in most of the earlier studies. The effect on fatal accidents is slightly larger than the effect on injury accidents. The effect during twilight is about 2/3 of the effect in darkness. The effect of road lighting is significantly smaller during adverse weather and road surface conditions than during fine conditions. The effects on pedestrian, bicycle and moped accidents are significantly larger than the effects on automobile and motorcycle accidents. The risk of injury accidents was found to increase in darkness. The average increase in risk was estimated to 17% on lit rural roads and 145% on unlit rural roads. The average increase in risk during rainy conditions is about 50% on lit rural roads and about 190% on unlit rural roads. The average increase in risk with respect to pedestrian accidents is about 140% on lit rural roads and about 360% on unlit rural roads.
Address Norwegian Public Roads Administration, Region South, Serviceboks 723, 4808 Arendal, Norway. per.wanvik@vegvesen.no
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:19114146 Approved no
Call Number IDA @ john @ Serial 250
Permanent link to this record
 

 
Author Bullough, J.D.; Donnell, E.T.; Rea, M.S.
Title To illuminate or not to illuminate: roadway lighting as it affects traffic safety at intersections Type Journal Article
Year 2013 Publication (up) Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 53 Issue Pages 65-77
Keywords Lighting; Accident Prevention/*methods; Accidents, Traffic/*prevention & control/psychology/statistics & numerical data; Cross-Sectional Studies; *Environment Design; Humans; *Lighting; Minnesota; Models, Statistical; Photoperiod; Psychomotor Performance; Regression Analysis; Safety/statistics & numerical data; Visual Perception
Abstract A two-pronged effort to quantify the impact of lighting on traffic safety is presented. In the statistical approach, the effects of lighting on crash frequency for different intersection types in Minnesota were assessed using count regression models. The models included many geometric and traffic control variables to estimate the association between lighting and nighttime and daytime crashes and the resulting night-to-day crash ratios. Overall, the presence of roadway intersection lighting was found to be associated with an approximately 12% lower night-to-day crash ratio than unlighted intersections. In the parallel analytical approach, visual performance analyses based on roadway intersection lighting practices in Minnesota were made for the same intersection types investigated in the statistical approach. The results of both approaches were convergent, suggesting that visual performance improvements from roadway lighting could serve as input for predicting improvements in crash frequency. A provisional transfer function allows transportation engineers to evaluate alternative lighting systems in the design phase so selections based on expected benefits and costs can be made.
Address Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:23377085 Approved no
Call Number LoNNe @ kagoburian @ Serial 627
Permanent link to this record
 

 
Author Monsere, C.M.; Fischer, E.L.
Title Safety effects of reducing freeway illumination for energy conservation Type Journal Article
Year 2008 Publication (up) Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 40 Issue 5 Pages 1773-1780
Keywords Lighting; Accidents, Traffic/*statistics & numerical data; *Automobile Driving; *Conservation of Energy Resources; Environment Design; Humans; *Lighting; Models, Statistical; Oregon; Safety; Wounds and Injuries/epidemiology
Abstract The addition of illumination where none was present is generally believed to have a positive effect on motor vehicle safety; reducing the frequency, as well as the severity of crashes. The operational cost of illumination, however, can make it a candidate for conservation during periods of high energy costs. In response to a forecasted energy shortage, the Oregon Department of Transportation selectively reduced illumination on interstate highways as part of an energy-saving effort. The reductions occurred at 44 interchanges and along 5.5 miles of interstate highway. This paper presents the results of a crash-based analysis of the changes in safety performance using an empirical-Bayes observational methodology. The study found an increase in reported crashes where the lineal lighting was reduced both in total crashes (28.95%, P=0.05) and injury night crashes (39.21%, P=0.07). Where full interchange lighting was reduced to partial lighting, a 2.46% increase (P=0.007) in total night crashes was observed. Injury night crashes, however, decreased by 12.16% (P<0.001) though day injury crashes also decreased at these locations. Unexpectedly, for interchanges where illumination was reduced from partial plus to partial, a 35.24% decrease (P<0.001) in total crashes and 39.98 (P<0.001) decrease in injury night crashes was found, though again, day crashes also decreased.
Address Department of Civil & Environmental Engineering, Portland State University, P.O. Box 751, Portland, OR 97207-0751, USA. monsere@pdx.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:18760107 Approved no
Call Number LoNNe @ kagoburian @ Serial 643
Permanent link to this record