|   | 
Details
   web
Records
Author Monsere, C.M.; Fischer, E.L.
Title Safety effects of reducing freeway illumination for energy conservation Type Journal Article
Year 2008 Publication (up) Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 40 Issue 5 Pages 1773-1780
Keywords Lighting; Accidents, Traffic/*statistics & numerical data; *Automobile Driving; *Conservation of Energy Resources; Environment Design; Humans; *Lighting; Models, Statistical; Oregon; Safety; Wounds and Injuries/epidemiology
Abstract The addition of illumination where none was present is generally believed to have a positive effect on motor vehicle safety; reducing the frequency, as well as the severity of crashes. The operational cost of illumination, however, can make it a candidate for conservation during periods of high energy costs. In response to a forecasted energy shortage, the Oregon Department of Transportation selectively reduced illumination on interstate highways as part of an energy-saving effort. The reductions occurred at 44 interchanges and along 5.5 miles of interstate highway. This paper presents the results of a crash-based analysis of the changes in safety performance using an empirical-Bayes observational methodology. The study found an increase in reported crashes where the lineal lighting was reduced both in total crashes (28.95%, P=0.05) and injury night crashes (39.21%, P=0.07). Where full interchange lighting was reduced to partial lighting, a 2.46% increase (P=0.007) in total night crashes was observed. Injury night crashes, however, decreased by 12.16% (P<0.001) though day injury crashes also decreased at these locations. Unexpectedly, for interchanges where illumination was reduced from partial plus to partial, a 35.24% decrease (P<0.001) in total crashes and 39.98 (P<0.001) decrease in injury night crashes was found, though again, day crashes also decreased.
Address Department of Civil & Environmental Engineering, Portland State University, P.O. Box 751, Portland, OR 97207-0751, USA. monsere@pdx.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:18760107 Approved no
Call Number LoNNe @ kagoburian @ Serial 643
Permanent link to this record
 

 
Author Sullivan, J.M.; Flannagan, M.J.
Title Determining the potential safety benefit of improved lighting in three pedestrian crash scenarios Type Journal Article
Year 2007 Publication (up) Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 39 Issue 3 Pages 638-647
Keywords Lighting; Accidents, Traffic/*prevention & control/statistics & numerical data; Automobile Driving/*psychology; Darkness/*adverse effects; *Environment Design; Humans; Lighting/*standards; Prevalence; Risk; *Safety; Time; *Visual Perception; *Walking
Abstract The influence of light level was determined for three pedestrian crash scenarios associated with three adaptive headlighting solutions-curve lighting, motorway lighting, and cornering light. These results were coupled to corresponding prevalence data for each scenario to derive measures of annual lifesaving potential. For each scenario, the risk associated with light level was determined using daylight saving time (DST) transitions to produce a dark/light interval risk ratio; prevalence was determined using the corresponding annual crash rate in darkness for each scenario. For curve lighting, pedestrian crashes on curved roadways were examined; for motorway lighting, crashes associated with high speed roadways were examined; and for cornering light, crashes involving turning vehicles at intersections were examined. In the curve analysis, lower dark/light crash ratios were observed for curved sections of roadway compared to straight roads. In the motorway analysis, posted speed limit was the dominant predictor of this ratio for the fatal crash dataset; road function class was the dominant predictor of the ratio for the fatal/nonfatal dataset. Finally, in the intersection crash analysis, the dark/light ratio for turning vehicles was lower than for nonturning vehicles; and the ratio at intersections was lower than at non-intersections. Relative safety need was determined by combining the dark/light ratio with prevalence data to produce an idealized measure of lifesaving potential. While all three scenarios suggested a potential for safety improvement, scenarios related to high speed roadway environments showed the greatest potential.
Address The University of Michigan Transportation Research Institute, 2901 Baxter Road, Ann Arbor, MI 48109-2150, USA. jsully@umich.edu <jsully@umich.edu>
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:17126278 Approved no
Call Number LoNNe @ kagoburian @ Serial 648
Permanent link to this record
 

 
Author Reagan, I.J.; Brumbelow, M.; Frischmann, T.
Title On-road experiment to assess drivers' detection of roadside targets as a function of headlight system, target placement, and target reflectance Type Journal Article
Year 2015 Publication (up) Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 76 Issue Pages 74-82
Keywords security; lighting
Abstract Adaptive headlights swivel with steering input to keep the beams on the roadway as drivers negotiate curves. To assess the effects of this feature on driver's visual performance, a field experiment was conducted at night on a rural, unlit, and unlined two-lane road during which 20 adult participant drivers searched a set of 60 targets. High- (n=30) and low- (n=30) reflectance targets were evenly distributed on straight road sections and on the inside or outside of curves. Participants completed three target detection trials: once with adaptive high-intensity discharge (HID) headlights, once with fixed HID headlights, and once with fixed halogen headlights. Results indicated the adaptive HID headlights helped drivers detect targets that were most difficult to see (low reflectance) at the points in curves found by other researchers to be most crucial for successful navigation (inside apex). For targets placed on straight stretches of road or on the outside of curves, the adaptive feature provided no significant improvement in target detection. However, the pattern of results indicate that HID lamps whether fixed or adaptive improved target detection somewhat, suggesting that part of the real world crash reduction measured for this adaptive system (Highway Loss Data Institute (HLDI), 2012a) may be due to the differences in the light source (HID vs. halogen). Depending on the scenario, the estimated benefits to driver response time associated with the tested adaptive (swiveling HID) headlights ranged from 200 to 380ms compared with the fixed headlight systems tested.
Address Insurance Institute for Highway Safety, Research 1005 N Glebe Rd., Suite 800, Arlington, VA 22201, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:25603548 Approved no
Call Number LoNNe @ kyba @ Serial 1251
Permanent link to this record
 

 
Author Shih, K.-T.; Liu, J.-S.; Shyu, F.; Yeh, S.-L.; Chen, H.H.
Title Blocking harmful blue light while preserving image color appearance Type Journal Article
Year 2016 Publication (up) ACM Transactions on Graphics Abbreviated Journal Tog
Volume 35 Issue 6 Pages 1-10
Keywords Lighting; Vision
Abstract Recent study in vision science has shown that blue light in a certain frequency band affects human circadian rhythm and impairs our health. Although applying a light blocker to an image display can block the harmful blue light, it inevitably makes an image look like an aged photo. In this paper, we show that it is possible to reduce harmful blue light while preserving the blue appearance of an image. Moreover, we optimize the spectral transmittance profile of blue light blocker based on psychophysical data and develop a color compensation algorithm to minimize color distortion. A prototype using notch filters is built as a proof of concept.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0730-0301 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1640
Permanent link to this record
 

 
Author Brainard, G.C.; Coyle, W.; Ayers, M.; Kemp, J.; Warfield, B.; Maida, J.; Bowen, C.; Bernecker, C.; Lockley, S.W.; Hanifin, J.P.
Title Solid-state lighting for the International Space Station: Tests of visual performance and melatonin regulation Type Journal Article
Year 2013 Publication (up) Acta Astronautica Abbreviated Journal Acta Astronautica
Volume 92 Issue 1 Pages 21-28
Keywords Human Health; Lighting
Abstract The International Space Station (ISS) uses General Luminaire Assemblies (GLAs) that house fluorescent lamps for illuminating the astronauts' working and living environments. Solid-state light emitting diodes (LEDs) are attractive candidates for replacing the GLAs on the ISS. The advantages of LEDs over conventional fluorescent light sources include lower up-mass, power consumption and heat generation, as well as fewer toxic materials, greater resistance to damage and long lamp life. A prototype Solid-State Lighting Assembly (SSLA) was developed and successfully installed on the ISS. The broad aim of the ongoing work is to test light emitted by prototype SSLAs for supporting astronaut vision and assessing neuroendocrine, circadian, neurobehavioral and sleep effects. Three completed ground-based studies are presented here including experiments on visual performance, color discrimination, and acute plasma melatonin suppression in cohorts of healthy, human subjects under different SSLA light exposure conditions within a high-fidelity replica of the ISS Crew Quarters (CQ). All visual tests were done under indirect daylight at 201 lx, fluorescent room light at 531 lx and 4870 K SSLA light in the CQ at 1266 lx. Visual performance was assessed with numerical verification tests (NVT). NVT data show that there are no significant differences in score (F=0.73, p=0.48) or time (F=0.14, p=0.87) for subjects performing five contrast tests (10%–100%). Color discrimination was assessed with Farnsworth-Munsell 100 Hue tests (FM-100). The FM-100 data showed no significant differences (F=0.01, p=0.99) in color discrimination for indirect daylight, fluorescent room light and 4870 K SSLA light in the CQ. Plasma melatonin suppression data show that there are significant differences (F=29.61, p<0.0001) across the percent change scores of plasma melatonin for five corneal irradiances, ranging from 0 to 405 &#956;W/cm2 of 4870 K SSLA light in the CQ (0–1270 lx). Risk factors for the health and safety of astronauts include disturbed circadian rhythms and altered sleep–wake patterns. These studies will help determine if SSLA lighting can be used both to support astronaut vision and serve as an in-flight countermeasure for circadian desynchrony, sleep disruption and cognitive performance deficits on the ISS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-5765 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1533
Permanent link to this record