toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rocha, H.; Peretta, I.S.; Lima, G.F.M.; Marques, L.G.; Yamanaka, K. url  doi
openurl 
  Title Exterior lighting computer-automated design based on multi-criteria parallel evolutionary algorithm: optimized designs for illumination quality and energy efficiency Type Journal Article
  Year 2015 Publication (up) Expert Systems with Applications Abbreviated Journal Expert Systems with Applications  
  Volume 45 Issue Pages 208-222  
  Keywords Lighting  
  Abstract A proper professional lighting design implies in a continuous search for the best compromise between both low power consumption and better lighting quality. This search converts this design into a hard to solve multi-objective optimization problem. Evolutionary algorithms are widely used to attack that type of hard optimization problems. However, professionals could not benefit from that kind of assistance since evolutionary algorithms have been unexplored by several commercial lighting design computer-aided softwares. This work proposes a system based on evolutionary algorithms which implement a computer-automated exterior lighting design both adequate to irregular shaped areas and able to respect lighting pole positioning constraints. The desired lighting design is constructed using a cluster of computers supported by a web client, turning this application into an efficient and easy tool to reduce project cycles, increase quality of results and decrease calculation times. This ELCAutoD-EA system consists in a proposal for a parallel multi-objective evolutionary algorithm to be executed in a cluster of computers with a Java remote client. User must choose lighting pole heights, allowed lamps and fixtures, as well as the simplified blue print of the area to be illuminated, marking the sub-areas with restrictions to pole positioning. The desired average illuminance must also be informed as well as the accepted tolerance. Based on user informed data, the developed application uses a dynamic representation of variable size as a chromosome and the cluster executes the evolutionary algorithm using the Island model paradigm. Achieved solutions comply with the illumination standards requirements and have a strong commitment to lighting quality and power consumption. In the present case study, the evolved design used 37.5% less power than the reference lighting design provided by a professional and at the same time ensured a 227.3% better global lighting uniformity. A better lighting quality is achieved because the proposed system solves multi-objective optimization problems by avoiding power wastes which are often unclear to a professional lighting engineer in charge of a given project.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4174 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1281  
Permanent link to this record
 

 
Author Peckston, T.S openurl 
  Title The theory and practice of gas lighting : containing much original matter relative to coal-gas, and an entirely new treatise on the economy of the gases, procured for illuminating purposes from oil, turf, &c. Type Journal Article
  Year 2005 Publication (up) Farmington Hills: Thomson Gale Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 1052  
Permanent link to this record
 

 
Author Tyndall, J. url  openurl
  Title The Electric Light Type Journal Article
  Year 1879 Publication (up) Fortnightly review Abbreviated Journal  
  Volume 25 Issue 146 Pages 197-216  
  Keywords History; Lighting; Review  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2378  
Permanent link to this record
 

 
Author Tewolde, F.T.; Lu, N.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. url  doi
openurl 
  Title Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer Type Journal Article
  Year 2016 Publication (up) Frontiers in Plant Science Abbreviated Journal Front Plant Sci  
  Volume 7 Issue Pages 448  
  Keywords Plants; LED; fruit quality; lighting period; photosynthesis; plant factory; single-truss tomato; supplemental lighting; yield  
  Abstract Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 mumol m(-2) s(-1) measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter.  
  Address Center for Environment, Health and Field Sciences, Chiba University, Kashiwa, Japan; Department of Biological Sciences, Faculty of Science, The University of Tokyo, Japan  
  Corporate Author Thesis  
  Publisher Frontiers Media S.A. Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-462X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27092163; PMCID:PMC4823311 Approved no  
  Call Number IDA @ john @ Serial 1434  
Permanent link to this record
 

 
Author Ebbensgaard, C.L. url  doi
openurl 
  Title Making sense of diodes and sodium: Vision, visuality and the everyday experience of infrastructural change Type Journal Article
  Year 2019 Publication (up) Geoforum Abbreviated Journal Geoforum  
  Volume 103 Issue Pages 95-104  
  Keywords Lighting; visual sensorium; United Kingdom  
  Abstract The recognition of vision as a powerful register for organising urban space locates lighting technologies at the heart of urban experience. Recently, scholars have established that lighting technologies shape not just what we see but how we see, drawing attention towards light as that ‘with which we see’. This article shifts attention from the role of lighting in shaping what and how people see, to how people make sense of changes to their visual sensorium—from what lighting infrastructures do to what is done with them. By following older residents living in the London Borough of Newham along routine travels on foot at night, I demonstrate how they make sense of the Council’s initiative to upgrade their 19,500 street-lamps with Light Emitting Diodes. I demonstrate how such infrastructural change exposes an uneven geographical distribution of and access to light and darkness with potentially detrimental consequences for the formation of public life after dark. Recognising how light infrastructures are reframed through everyday life, I demonstrate how LEDs do not necessarily produce their desired effects and how light clutter and light bleed might contribute to producing nocturnal atmospheres where people feel safe and confident. Broadening the understanding of how different technologies and light sources are important for the formation of inclusive nocturnal publics the article sets out a ‘politics of visibility’ that recognises the role of lighting in creating visibility for and of residents.  
  Address Queen Mary University of London, 329 Mile End Road, London E1 4NS, United Kingdom; c.l.ebbensgaard(at)qmul.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-7185 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2360  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: