toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rea, M. S.; Bierman, A. url  openurl
  Title Spectral considerations for outdoor lighting: Consequences for sky glow Type Journal Article
  Year 2014 Publication Lighting Research and Technology Abbreviated Journal Lighting Res. & Tech.  
  Volume 47 Issue 8 Pages 920-930  
  Keywords Lighting; skyglow; spectrum; scattering; aerosol; modeling  
  Abstract It is well known that the magnitude of sky glow on a clear night depends upon the aerosol content in the atmosphere and the spectral power distribution (amount and spectrum). Sources with a greater proportion of short-wavelength radiation produce more backscattered radiation, but as aerosol density increases, the differential effect of spectrum becomes smaller. Sky glow magnitude also depends upon the operating characteristics of the detector and will be greater when the spectrum of the backscattered radiation is tuned to the spectral band-pass characteristics of the detector. The human visual system is most often used to assess sky glow magnitude, but its spectral response is not limited to a single, univariate detector. Rather, the retina is composed of many neural channels, each with its own spectral and absolute sensitivities to optical radiation. Since we can use a different neural channel to see an individual star than we do to gain an overall impression of sky brightness, changes to the spectral power distribution of backscattered radiation differentially, and simultaneously, affect one’s ability to see a single star and to assess sky brightness. A general method for assessing sky glow based upon aerosol content, spectral power distribution and the specific operating characteristics of a detector, human or otherwise, is offered.  
  Address Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York, USA  
  Corporate Author Thesis  
  Publisher (down) The Society of Light and Lighting Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1065  
Permanent link to this record
 

 
Author Smalling, R.; Enright, J. url  doi
openurl 
  Title A Crusade on HSP Amber High Mast Yields Green with Plasma Type Journal Article
  Year 2015 Publication Energy Abbreviated Journal Energy Engr.  
  Volume 112 Issue 5 Pages 12-17  
  Keywords Lighting; Energy; lighting technology; light-emitting plasma; lighting transition; LEP; Washington  
  Abstract Naval Facilities Engineering Command Northwest (NAVFAC NW) Public Works Department (PWD) Everett recently completed a lighting replacement project at Naval Station (NS) Everett, Washington, utilizing a utility energy service contract (UESC) with Bonneville Power Administration (BPA). The project replaced 74 high pressure sodium (HPS) light fixtures with modern energy saving, light-emitting plasma (LEP) fixtures atop 80-foot light poles along the piers and wharf at NS Everett. The no-glare LEP bulbs last twice as long while using less than half the power of their HPS predecessors. This project was completed at a cost of $160,000 and will result in cost avoidances in annual operating and maintenance of over $16,000, with a payback under 10 years. This UESC-financed and executed project saves one percent of the total shore energy consumption cost. Through similar efficiency projects and energy conservation efforts, NS Everett has reduced power usage by 16 percent in the past year and 40 percent since 2003.  
  Address 2000 West Marine View Drive, Bldg 2000, Rm 242 Everett, WA 98207  
  Corporate Author Thesis  
  Publisher (down) Taylor & Francis Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1219  
Permanent link to this record
 

 
Author Lewis, A.L. url  doi
openurl 
  Title Visual Performance as a Function of Spectral Power Distribution of Light Sources at Luminances Used for General Outdoor Lighting Type Journal Article
  Year 1999 Publication Journal of the Illuminating Engineering Society Abbreviated Journal Journal of the Illuminating Engineering Society  
  Volume 28 Issue 1 Pages 37-42  
  Keywords Vision; spectral power distribution; SPD; lighting  
  Abstract (none)  
  Address Michigan College of Optometry, Ferris State University, Big Rapids, Michigan  
  Corporate Author Thesis  
  Publisher (down) Taylor & Francis Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0099-4480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2223  
Permanent link to this record
 

 
Author Schroer, S.; Hölker, F. url  doi
openurl 
  Title Light Pollution Reduction Type Book Chapter
  Year 2014 Publication Handbook of Advanced Lighting Technology Abbreviated Journal  
  Volume Issue Pages  
  Keywords ligting technology; awareness; skyglow, lighting design  
  Abstract Artificial light at night is an irreplaceable technology for our society and its activities at nighttime. But this indispensable tool has detrimental side effects, which have only come to light in the past 10–20 years. This chapter reviews ways to implement technology in order to lower the impact of artificial light at night on nature and humans. Further, it provides guidelines for environmental protection and scientific approaches to reduce the increase in light pollution and discusses the urgent need for further research. Measures to prevent obtrusive light and unintentional trespass into homes and natural habitats are

mostly simple solutions like shielding luminaires and predominantly require awareness. Shades are another effective tool to reduce trespass from interior lights. Especially in greenhouses, the use of shades significantly reduces the contribution to skyglow. Artificial light should be switched off whenever it is not needed. Smart, flexible lighting systems can help to use artificial light with precision. The choice of the appropriate illumination has to be balanced by the needs for optimal visibility, human well-being, environmental conservation and protection of the night sky. For visibility, conditions comparable to bright moonlit nights (0.3 lx) are sufficient. Low-level streetlights that produce only 1–3 lx at the surface meet the requirement of facial cognition. Although this light level might be too low for road safety, a consideration of maximum illumination levels in street lighting is recommended. The spectral power distribution of illuminants can impact several environmental parameters. For example, illuminants emitting short wavelengths can sup- press melatonin in higher vertebrates (including humans), are attracting many insect species, and contribute in skyglow above average. Recent findings in different measures for energy efficiency of illuminants at scotopic or mesopic vision conditions compared to photopic conditions indicate that the assessment of lighting products needs fundamental revision. Further research is crucially needed to create refuges for light-sensitive species at night, to measure the impact of artificial light on nature, and also to monitor the improvements of light pollution-reducing measures. Decrees in various regions have helped to lower the impact of artificial light at night significantly. Measures to reduce the impact of artificial light at night need to be carefully balanced with the surrounding environment. Thoughtful guidelines are crucial to reducing the rapid increase in sky brightness worldwide. These guidelines need to be made accessible for decision makers especially in areas which require new light installations.
 
  Address  
  Corporate Author Thesis  
  Publisher (down) Springer International Publishing Place of Publication Editor Karlicek, Robert Sun, Ching-Chern Zissis, Georgis Ma, Ruiqing  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1569  
Permanent link to this record
 

 
Author Kamrowski, R.L.; Sutton, S.G.; Tobin, R.C.; Hamann, M. url  doi
openurl 
  Title Potential applicability of persuasive communication to light-glow reduction efforts: a case study of marine turtle conservation Type Journal Article
  Year 2014 Publication Environmental Management Abbreviated Journal Environ Manage  
  Volume 54 Issue 3 Pages 583-595  
  Keywords Society; Adolescent; Adult; Aged; Aged, 80 and over; Animals; *Conservation of Natural Resources; Culture; Female; Humans; *Lighting; Male; Middle Aged; Persuasive Communication; Public Opinion; Queensland; Questionnaires; *Turtles; Young Adult  
  Abstract Artificial lighting along coastlines poses a significant threat to marine turtles due to the importance of light for their natural orientation at the nesting beach. Effective lighting management requires widespread support and participation, yet engaging the public with light reduction initiatives is difficult because benefits associated with artificial lighting are deeply entrenched within modern society. We present a case study from Queensland, Australia, where an active light-glow reduction campaign has been in place since 2008 to protect nesting turtles. Semi-structured questionnaires explored community beliefs about reducing light and evaluated the potential for using persuasive communication techniques based on the theory of planned behavior (TPB) to increase engagement with light reduction. Respondents (n = 352) had moderate to strong intentions to reduce light. TPB variables explained a significant proportion of variance in intention (multiple regression: R (2) = 0.54-0.69, P < 0.001), but adding a personal norm variable improved the model (R (2) = 0.73-0.79, P < 0.001). Significant differences in belief strength between campaign compliers and non-compliers suggest that targeting the beliefs reducing light leads to “increased protection of local turtles” (P < 0.01) and/or “benefits to the local economy” (P < 0.05), in combination with an appeal to personal norms, would produce the strongest persuasion potential for future communications. Selective legislation and commitment strategies may be further useful strategies to increase community light reduction. As artificial light continues to gain attention as a pollutant, our methods and findings will be of interest to anyone needing to manage public artificial lighting.  
  Address School of Earth and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia, ruth.kamrowski(at)my.jcu.edu.au  
  Corporate Author Thesis  
  Publisher (down) Springer Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0364-152X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24957580 Approved no  
  Call Number IDA @ john @ Serial 1283  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: