toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vollmer, C.; Michel, U.; Randler, C. url  doi
openurl 
  Title Outdoor light at night (LAN) is correlated with eveningness in adolescents Type Journal Article
  Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 29 Issue 4 Pages 502-508  
  Keywords Adolescent; *Adolescent Behavior/drug effects; Biological Clocks; Central Nervous System Stimulants/administration & dosage; *Circadian Rhythm/drug effects; Computers; Cross-Sectional Studies; Female; Germany; Humans; *Light; Lighting; Male; *Photic Stimulation; *Photoperiod; Questionnaires; *Sleep/drug effects; Television; Time Factors; Video Games; *Wakefulness/drug effects  
  Abstract External zeitgebers synchronize the human circadian rhythm of sleep and wakefulness. Humans adapt their chronotype to the day-night cycle, the strongest external zeitgeber. The human circadian rhythm shifts to evening-type orientation when daylight is prolonged into the evening and night hours by artificial light sources. Data from a survey of 1507 German adolescents covering questions about chronotype and electronic screen media use combined with nocturnal satellite image data suggest a relationship between chronotype and artificial nocturnal light. Adolescents living in brightly illuminated urban districts had a stronger evening-type orientation than adolescents living in darker and more rural municipalities. This result persisted when controlling for time use of electronic screen media, intake of stimulants, type of school, age, puberty status, time of sunrise, sex, and population density. Time spent on electronic screen media use-a source of indoor light at night-is also correlated with eveningness, as well as intake of stimulants, age, and puberty status, and, to a lesser degree, type of school and time of sunrise. Adequate urban development design and parents limiting adolescents' electronic screen media use in the evening could help to adjust adolescents' zeitgeber to early school schedules when they provide appropriate lighting conditions for daytime and for nighttime.  
  Address Department of Biology, University of Education Heidelberg, Germany. vollmer@ph-heidelberg.de  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22214237 Approved no  
  Call Number IDA @ john @ Serial 150  
Permanent link to this record
 

 
Author Evans, J.A.; Elliott, J.A.; Gorman, M.R. url  doi
openurl 
  Title Dim nighttime illumination accelerates adjustment to timezone travel in an animal model Type Journal Article
  Year 2009 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 19 Issue 4 Pages R156-7  
  Keywords *Adaptation, Physiological; Animals; Behavior, Animal/physiology; Biological Clocks/*physiology; Circadian Rhythm/*physiology; Cricetinae; Humans; *Lighting; Mesocricetus; Mice; Motor Activity/physiology; Phodopus; *Photoperiod; Time Factors  
  Abstract Jetlag reflects a mismatch between local and circadian time following rapid timezone travel [1]. Appropriately timed bright light can shift human circadian rhythms but recovery is slow (e.g., 1-2 days per timezone). Most symptoms subside after resynchronization, but chronic jetlag may have enduring negative effects [2], including even accelerated mortality in mice [3]. Melatonin, prescription drugs, and/or exercise may help shift the clock but, like bright light, require complex schedules of application [1]. Thus, there is a need for more efficient and practical treatments for addressing jetlag. In contrast to bright daytime lighting, nighttime conditions have received scant attention. By incorporating more naturalistic nighttime lighting comparable in intensity to dim moonlight, we demonstrate that recovery after simulated jetlag is accelerated when nights are dimly lit rather than completely dark.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19243688 Approved no  
  Call Number IDA @ john @ Serial 152  
Permanent link to this record
 

 
Author Kloog, I.; Stevens, R.G.; Haim, A.; Portnov, B.A. url  doi
openurl 
  Title Nighttime light level co-distributes with breast cancer incidence worldwide Type Journal Article
  Year 2010 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control  
  Volume 21 Issue 12 Pages 2059-2068  
  Keywords Adult; Birth Rate; Breast Neoplasms/*epidemiology/etiology; Carcinoma/*epidemiology/etiology; Circadian Rhythm/*physiology; Cohort Studies; Electricity; Female; Humans; Incidence; *Light/adverse effects; Lighting; Photoperiod; Registries; Urban Population/statistics & numerical data; World Health; oncogenesis  
  Abstract Breast cancer incidence varies widely among countries of the world for largely unknown reasons. We investigated whether country-level light at night (LAN) is associated with incidence. We compared incidence rates of five common cancers in women (breast, lung, colorectal, larynx, and liver), observed in 164 countries of the world from the GLOBOCAN database, with population-weighted country-level LAN, and with several developmental and environmental indicators, including fertility rate, per capita income, percent of urban population, and electricity consumption. Two types of regression models were used in the analysis: Ordinary Least Squares and Spatial Errors. We found a significant positive association between population LAN level and incidence rates of breast cancer. There was no such an association between LAN level and colorectal, larynx, liver, and lung cancers. A sensitivity test, holding other variables at their average values, yielded a 30-50% higher risk of breast cancer in the highest LAN exposed countries compared to the lowest LAN exposed countries. The possibility that under-reporting from the registries in the low-resource, and also low-LAN, countries created a spurious association was evaluated in several ways and shown not to account for the results. These findings provide coherence of the previously reported case-control and cohort studies with the co-distribution of LAN and breast cancer in entire populations.  
  Address Department of Natural Resources & Environmental Management, University of Haifa, 31905 Mount Carmel, Haifa, Israel  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-5243 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20680434 Approved no  
  Call Number IDA @ john @ Serial 160  
Permanent link to this record
 

 
Author Luginbuhl, C.B.; Boley, P.A.; Davis, D.R. url  doi
openurl 
  Title The impact of light source spectral power distribution on sky glow Type Journal Article
  Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 139 Issue Pages 21-26  
  Keywords Light pollution; Sky glow; Blue-rich light sources; LED; light emitting diode; lighting  
  Abstract The effect of light source spectral power distribution on the visual brightness of anthropogenic sky glow is described. Under visual adaptation levels relevant to observing the night sky, namely with dark-adapted (scotopic) vision, blue-rich (“white”) sources produce a dramatically greater sky brightness than yellow-rich sources. High correlated color temperature LEDs and metal halide sources produce a visual brightness up to 8× brighter than low-pressure sodium and 3× brighter than high-pressure sodium when matched lumen-for-lumen and observed nearby. Though the sky brightness arising from blue-rich sources decreases more strongly with distance, the visual sky glow resulting from such sources remains significantly brighter than from yellow sources out to the limits of this study at 300 km.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 178  
Permanent link to this record
 

 
Author Pun, C.S.J.; So, C.W.; Leung, W.Y.; Wong, C.F. url  doi
openurl 
  Title Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network Type Journal Article
  Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 139 Issue Pages 90-108  
  Keywords Light pollution; Night sky brightness; Skyglow; Moon radiation; Urban lighting; Hong Kong  
  Abstract Light pollution is a form of environmental degradation in which excessive artificial outdoor lighting, such as street lamps, neon signs, and illuminated signboards, affects the natural environment and the ecosystem. Poorly designed outdoor lighting not only wastes energy, money, and valuable Earth resources, but also robs us of our beautiful night sky. Effects of light pollution on the night sky can be evaluated by the skyglow caused by these artificial lighting sources, through measurements of the night sky brightness (NSB). The Hong Kong Night Sky Brightness Monitoring Network (NSN) was established to monitor in detail the conditions of light pollution in Hong Kong. Monitoring stations were set up throughout the city covering a wide range of urban and rural settings to continuously measure the variations of the NSB. Over 4.6 million night sky measurements were collected from 18 distinct locations between May 2010 and March 2013. This huge dataset, over two thousand times larger than our previous survey [1], forms the backbone for studies of the temporal and geographical variations of this environmental parameter and its correlation with various natural and artificial factors. The concepts and methodology of the NSN were presented here, together with an analysis of the overall night sky conditions in Hong Kong. The average NSB in Hong Kong, excluding data affected by the Moon, was 16.8 mag arcsec−2, or 82 times brighter than the dark site standard established by the International Astronomical Union (IAU) [2]. The urban night sky was on average 15 times brighter than that in a rural location, firmly establishing the effects of artificial lighting sources on the night sky.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 186  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: