|   | 
Details
   web
Records
Author Fuller, G. (ed)
Title (down) The Night Shift: Lighting and Nocturnal Strepsirrhine Care in Zoos Type Book Whole
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords zoos; light at night; circadian disruption; strepsirrhines; primates; lorises; pottos; lighting design
Abstract Over billions of years of evolution, light from the sun, moon, and stars has provided

organisms with reliable information about the passage of time. Photic cues entrain

the circadian system, allowing animals to perform behaviors critical for survival and

reproduction at optimal times. Modern artificial lighting has drastically altered

environmental light cues. Evidence is accumulating that exposure to light at night

(particularly blue wavelengths) from computer screens, urban light pollution, or as

an occupational hazard of night-shift work has major implications for human health.

Nocturnal animals are the shift workers of zoos; they are generally housed on

reversed light cycles so that daytime visitors can observe their active behaviors. As a

result, they are exposed to artificial light throughout their subjective night. The goal

of this investigation was to examine critically the care of nocturnal strepsirrhine

primates in North American zoos, focusing on lorises (Loris and Nycticebus spp.) and pottos (Perodicticus potto). The general hypothesis was that exhibit lighting design affects activity patterns and circadian physiology in nocturnal strepsirrhines. The

first specific aim was to assess the status of these populations. A multi-institutional husbandry survey revealed little consensus among zoos in lighting design, with both red and blue light commonly used for nocturnal illumination. A review of medical records also revealed high rates of neonate mortality. The second aim was to

develop methods for measuring the effects of exhibit lighting on behavior and

health. The use of actigraphy for automated activity monitoring was explored.

Methods were also developed for measuring salivary melatonin and cortisol as

indicators of circadian disruption. Finally, a multi-institutional study was conducted

comparing behavioral and endocrine responses to red and blue dark phase lighting.

These results showed greater activity levels in strepsirrhines housed under red light than blue. Salivary melatonin concentrations in pottos suggested that blue light

suppressed nocturnal melatonin production at higher intensities, but evidence for

circadian disruption was equivocal. These results add to the growing body of

evidence on the detrimental effects of blue light at night and are a step towards

empirical recommendations for nocturnal lighting design in zoos.
Address Department of Biology, Case Western Reserve University
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Fuller, G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 327
Permanent link to this record
 

 
Author Bensch, G.; Peters, J.; Sievert, M.
Title (down) The lighting transition in rural Africa — From kerosene to battery-powered LED and the emerging disposal problem Type Journal Article
Year 2017 Publication Energy for Sustainable Development Abbreviated Journal Energy for Sustainable Development
Volume 39 Issue Pages 13-20
Keywords Lighting; Energy
Abstract People without electricity access, numbering today more than 500 million in rural Africa alone, have been using dim and sooty kerosene lamps and candles for their lighting purposes for decades. In the present paper, current lighting usage patterns are systematically assessed using detailed new survey data from seven countries across Sub-Saharan Africa. The data makes evident that a transition has taken place in recent years, both unnoticed by and without external support from governmental or non-governmental organizations: the rural population without electricity in Africa has replaced kerosene lights and candles by simple, yet more efficient and cleaner LED lamps powered by non-rechargeable batteries. Nevertheless, we also show that the discharged batteries are generally disposed of inappropriately in latrines or the nature. The toxic content of many dry-cell batteries and their accumulation at local litter hotspots may have harmful repercussions on health and the environment. We conclude by suggesting that rapid action is needed to, first, install an effective monitoring system on batteries that enter the continent and, second, put in place an appropriate waste management system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0973-0826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2193
Permanent link to this record
 

 
Author Cao, D.; Barrionuevo, P.A.
Title (down) The importance of intrinsically photosensitive retinal ganglion cells and implications for lighting design Type Journal Article
Year 2015 Publication Journal of Solid State Lighting Abbreviated Journal J Sol State Light
Volume 2 Issue 1 Pages 10
Keywords Human Health; lighting; Melanopsin; ipRGC; Photoreceptors; Circadian; Visual perception; Color Contrast; Sensitivity; LED; Lighting Design
Abstract We reviewed the role of melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) in light-dependent functions, including circadian rhythm that is important for health and visual perception. We then discussed the implications for lighting design.
Address Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago; dcao98(at)uic.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-1107 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1325
Permanent link to this record
 

 
Author Stone, E.L.; Wakefield, A.; Harris, S.; Jones, G.
Title (down) The impacts of new street light technologies: experimentally testing the effects on bats of changing from low-pressure sodium to white metal halide Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 370 Issue Pages 20140127
Keywords Lighting; Animals; bats; mammals; Pipistrellus pipistrellus; Pipistrellus pygmaeus; Nyctalus; Eptesicus; artificial lighting; ecosystem-level effects; Philips CosmoPolis lights; light pollution
Abstract Artificial light at night is a major feature of anthropogenic global change and is increasingly recognized as affecting biodiversity, often negatively. On a global scale, newer technology white lights are replacing orange sodium lights to reduce energy waste. In 2009, Cornwall County Council (UK) commenced replacement of existing low-pressure sodium (LPS) high intensity discharge (HID) street lights with new Phillips CosmoPolis white ceramic metal halide street lights to reduce energy wastage. This changeover provided a unique collaborative opportunity to implement a before-after-control-impact field experiment to investigate the ecological effects of newly installed broad spectrum light technologies. Activity of the bat species Pipistrellus pipistrellus, P. pygmaeus and Nyctalus/Eptesicus spp. was significantly higher at metal halide than LPS lights, as found in other studies of bat activity at old technology (i.e. mercurLighting; artificial lighting; ecosystem-level effects; Philips CosmoPolis lights; light pollutiony vapour) white light types. No significant difference was found in feeding attempts per bat pass between light types, though more passes overall were recorded at metal halide lights. Species-specific attraction of bats to the metal halide lights could have cascading effects at lower trophic levels. We highlight the need for further research on possible ecosystem-level effects of light technologies before they are installed on a wide scale.
Address School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; emma.stone@bristol.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1121
Permanent link to this record
 

 
Author Cai, W.; Yue, J.; Dai, Q.; Hao, L.; Lin, Y.; Shi, W.; Huang, Y.; Wei, M.
Title (down) The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design Type Journal Article
Year 2018 Publication Building and Environment Abbreviated Journal Building and Environment
Volume 141 Issue Pages 288-297
Keywords Lighting
Abstract Recently, corneal illuminance attracts much attention because it is closely related to important functions of indoor lighting. Especially, applying circadian light in the built environment places a challenging requirement on indirect corneal illuminance. In this work, rule-of-thumb equations are proposed to guide circadian lighting design: (i) for artificial lighting, Ecor,avg (i) = (Φ/C1) · ρ/(1−ρ′), where Ecor,avg (i) is the average indirect corneal illuminance at standing or sitting positions, Φ is the initial flux from luminaires, C1 is a constant comparable to the total room surface area, ρ is the reflectance of the surface where the first reflection occurs, and ρ′ is the area-weighted average of surface reflectance; and (ii) for daylighting, Ecor,avg (i) = C2 · WWR · ρ/(1−ρ′), where C2 is a constant, and WWR represents the window-to-wall ratio.

The equations above are validated by comparing against numerical simulation data obtained with the Radiance software. For artificial lighting simulation, various combinations of room surface reflectance, initial light distribution, and WWR are investigated; and for daylighting simulation, different combinations of surface reflectance, WWR, and geographic location are analyzed. The good fits to simulation data indicate that the proposed simple equations can provide reasonably accurate results for quick feedback at the field. It is also demonstrated that room surface reflectance has a dominant impact on indirect corneal illuminance. The approach of improving surface reflectance is more favorable than increasing luminaire flux or expanding window area, and therefore should be the recommended approach to achieve quality and efficient circadian lighting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1929
Permanent link to this record