|   | 
Details
   web
Records
Author Farkas, T.D.; Kiràly, T.; Pardy, T.; Rang, T.; Rang, G.
Title (up) Application of power line communication technology in street lighting control Type Journal Article
Year 2018 Publication International Journal of Design & Nature and Ecodynamics Abbreviated Journal Int. J. DNE
Volume 13 Issue 2 Pages 176-186
Keywords Lighting
Abstract Rapidly increasing usage of telecommunication systems causes new transmission technologies and networks to emerge. Not only the efficiency, reliability and accessibility of the network are important, but also the economic issues. One cost-effective solution could be power line communication (PLC) technology, which transmits data using the existing electricity infrastructure. The application of this communication technique is an attractive and innovative solution for the realization of smart cities and smart homes. With intelligent control networks, energy savings can be optimized and the operating as well as maintenance costs can be reduced. Since outdoor lighting systems are the major consumers of electricity, to create a modern, energy-efficient city, intelligent street lighting control is needed. This paper provides an overview of power line communication principles including the theoretical background of data communication, modulation techniques, channel access methods, protocols, disturbances and noises. Furthermore, in order to highlight the benefits of a PLC-based street lighting control system, a pilot project will be presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-7437 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2091
Permanent link to this record
 

 
Author Dick, R.
Title (up) Applied scotobiology in luminaire design Type Journal Article
Year 2014 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology
Volume 46 Issue 1 Pages 50-66
Keywords Lighting
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 576
Permanent link to this record
 

 
Author Dominoni, D.; Quetting, M.; Partecke, J.
Title (up) Artificial light at night advances avian reproductive physiology Type Journal Article
Year 2013 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 280 Issue 1756 Pages 20123017
Keywords Animals; *Lighting; Male; Molting; Photoperiod; Reproduction/*physiology; Singing; Songbirds/*physiology; Testis/anatomy & histology; Testosterone/blood; Trees
Abstract Artificial light at night is a rapidly increasing phenomenon and it is presumed to have global implications. Light at night has been associated with health problems in humans as a consequence of altered biological rhythms. Effects on wild animals have been less investigated, but light at night has often been assumed to affect seasonal cycles of urban dwellers. Using light loggers attached to free-living European blackbirds (Turdus merula), we first measured light intensity at night which forest and city birds are subjected to in the wild. Then we used these measurements to test for the effect of light at night on timing of reproductive physiology. Captive city and forest blackbirds were exposed to either dark nights or very low light intensities at night (0.3 lux). Birds exposed to light at night developed their reproductive system up to one month earlier, and also moulted earlier, than birds kept under dark nights. Furthermore, city birds responded differently than forest individuals to the light at night treatment, suggesting that urbanization can alter the physiological phenotype of songbirds. Our results emphasize the impact of human-induced lighting on the ecology of millions of animals living in cities and call for an understanding of the fitness consequences of light pollution.
Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell 78315, Germany. ddominoni@orn.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:23407836; PMCID:PMC3574380 Approved no
Call Number IDA @ john @ Serial 50
Permanent link to this record
 

 
Author Dimovski, A.M.; Robert, K.A.
Title (up) Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 497-505
Keywords Animals; Lighting
Abstract The focus of sustainable lighting tends to be on reduced CO2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m(2) ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m(2) ), and no lighting (irradiance from sky glow < 0.37 x 10(-3) W/m(2) ), on melatonin production, lipid peroxidation, and circulating antioxidant capacity in the tammar wallaby (Macropus eugenii). Night-time melatonin and oxidative status were determined at baseline and again following 10 weeks exposure to light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts.
Address Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:29722167 Approved no
Call Number GFZ @ kyba @ Serial 1888
Permanent link to this record
 

 
Author Stevens, R.G.
Title (up) Artificial lighting in the industrialized world: circadian disruption and breast cancer Type Journal Article
Year 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control
Volume 17 Issue 4 Pages 501-507
Keywords Human Health; Alcohol Drinking/adverse effects; Animals; Breast Neoplasms/*etiology; Chronobiology Disorders/*etiology/physiopathology; Circadian Rhythm; Developing Countries; Female; Humans; Lighting/*adverse effects; Melatonin/metabolism; Risk Factors; Suprachiasmatic Nucleus/physiopathology
Abstract Breast cancer risk is high in industrialized societies, and increases as developing countries become more Westernized. The reasons are poorly understood. One possibility is circadian disruption from aspects of modern life, in particular the increasing use of electric power to light the night, and provide a sun-free environment during the day inside buildings. Circadian disruption could lead to alterations in melatonin production and in changing the molecular time of the circadian clock in the suprachiasmatic nuclei (SCN). There is evidence in humans that the endogenous melatonin rhythm is stronger for persons in a bright-day environment than in a dim-day environment; and the light intensity necessary to suppress melatonin at night continues to decline as new experiments are done. Melatonin suppression can increase breast tumorigenesis in experimental animals, and altering the endogenous clock mechanism may have downstream effects on cell cycle regulatory genes pertinent to breast tissue development and susceptibility. Therefore, maintenance of a solar day-aligned circadian rhythm in endogenous melatonin and in clock gene expression by exposure to a bright day and a dark night, may be a worthy goal. However, exogenous administration of melatonin in an attempt to achieve this goal may have an untoward effect given that pharmacologic dosing with melatonin has been shown to phase shift humans depending on the time of day it's given. Exogenous melatonin may therefore contribute to circadian disruption rather than alleviate it.
Address University of Connecticut Health Center, Farmington, CT 06030-6325, USA. bugs@neuron.uchc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-5243 ISBN Medium
Area Expedition Conference
Notes PMID:16596303 Approved no
Call Number LoNNe @ kagoburian @ Serial 818
Permanent link to this record