|
Records |
Links |
|
Author |
Dick, R. |

|
|
Title  |
Applied scotobiology in luminaire design |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Lighting Research and Technology |
Abbreviated Journal |
Lighting Research and Technology |
|
|
Volume |
46 |
Issue |
1 |
Pages |
50-66 |
|
|
Keywords |
Lighting |
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1477-1535 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ schroer @ |
Serial |
576 |
|
Permanent link to this record |
|
|
|
|
Author |
Dominoni, D.; Quetting, M.; Partecke, J. |

|
|
Title  |
Artificial light at night advances avian reproductive physiology |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Proceedings. Biological Sciences / The Royal Society |
Abbreviated Journal |
Proc Biol Sci |
|
|
Volume |
280 |
Issue |
1756 |
Pages |
20123017 |
|
|
Keywords |
Animals; *Lighting; Male; Molting; Photoperiod; Reproduction/*physiology; Singing; Songbirds/*physiology; Testis/anatomy & histology; Testosterone/blood; Trees |
|
|
Abstract |
Artificial light at night is a rapidly increasing phenomenon and it is presumed to have global implications. Light at night has been associated with health problems in humans as a consequence of altered biological rhythms. Effects on wild animals have been less investigated, but light at night has often been assumed to affect seasonal cycles of urban dwellers. Using light loggers attached to free-living European blackbirds (Turdus merula), we first measured light intensity at night which forest and city birds are subjected to in the wild. Then we used these measurements to test for the effect of light at night on timing of reproductive physiology. Captive city and forest blackbirds were exposed to either dark nights or very low light intensities at night (0.3 lux). Birds exposed to light at night developed their reproductive system up to one month earlier, and also moulted earlier, than birds kept under dark nights. Furthermore, city birds responded differently than forest individuals to the light at night treatment, suggesting that urbanization can alter the physiological phenotype of songbirds. Our results emphasize the impact of human-induced lighting on the ecology of millions of animals living in cities and call for an understanding of the fitness consequences of light pollution. |
|
|
Address |
Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell 78315, Germany. ddominoni@orn.mpg.de |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0962-8452 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:23407836; PMCID:PMC3574380 |
Approved |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
50 |
|
Permanent link to this record |
|
|
|
|
Author |
Dimovski, A.M.; Robert, K.A. |

|
|
Title  |
Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology |
Abbreviated Journal |
J Exp Zool A Ecol Integr Physiol |
|
|
Volume |
329 |
Issue |
8-9 |
Pages |
497-505 |
|
|
Keywords |
Animals; Lighting |
|
|
Abstract |
The focus of sustainable lighting tends to be on reduced CO2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m(2) ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m(2) ), and no lighting (irradiance from sky glow < 0.37 x 10(-3) W/m(2) ), on melatonin production, lipid peroxidation, and circulating antioxidant capacity in the tammar wallaby (Macropus eugenii). Night-time melatonin and oxidative status were determined at baseline and again following 10 weeks exposure to light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts. |
|
|
Address |
Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Australia |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2471-5638 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29722167 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1888 |
|
Permanent link to this record |
|
|
|
|
Author |
Stevens, R.G. |

|
|
Title  |
Artificial lighting in the industrialized world: circadian disruption and breast cancer |
Type |
Journal Article |
|
Year |
2006 |
Publication |
Cancer Causes & Control : CCC |
Abbreviated Journal |
Cancer Causes Control |
|
|
Volume |
17 |
Issue |
4 |
Pages |
501-507 |
|
|
Keywords |
Human Health; Alcohol Drinking/adverse effects; Animals; Breast Neoplasms/*etiology; Chronobiology Disorders/*etiology/physiopathology; Circadian Rhythm; Developing Countries; Female; Humans; Lighting/*adverse effects; Melatonin/metabolism; Risk Factors; Suprachiasmatic Nucleus/physiopathology |
|
|
Abstract |
Breast cancer risk is high in industrialized societies, and increases as developing countries become more Westernized. The reasons are poorly understood. One possibility is circadian disruption from aspects of modern life, in particular the increasing use of electric power to light the night, and provide a sun-free environment during the day inside buildings. Circadian disruption could lead to alterations in melatonin production and in changing the molecular time of the circadian clock in the suprachiasmatic nuclei (SCN). There is evidence in humans that the endogenous melatonin rhythm is stronger for persons in a bright-day environment than in a dim-day environment; and the light intensity necessary to suppress melatonin at night continues to decline as new experiments are done. Melatonin suppression can increase breast tumorigenesis in experimental animals, and altering the endogenous clock mechanism may have downstream effects on cell cycle regulatory genes pertinent to breast tissue development and susceptibility. Therefore, maintenance of a solar day-aligned circadian rhythm in endogenous melatonin and in clock gene expression by exposure to a bright day and a dark night, may be a worthy goal. However, exogenous administration of melatonin in an attempt to achieve this goal may have an untoward effect given that pharmacologic dosing with melatonin has been shown to phase shift humans depending on the time of day it's given. Exogenous melatonin may therefore contribute to circadian disruption rather than alleviate it. |
|
|
Address |
University of Connecticut Health Center, Farmington, CT 06030-6325, USA. bugs@neuron.uchc.edu |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0957-5243 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:16596303 |
Approved |
no |
|
|
Call Number |
LoNNe @ kagoburian @ |
Serial |
818 |
|
Permanent link to this record |
|
|
|
|
Author |
Mammola, S.; Isaia, M.; Demonte, D.; Triolo, P.; Nervo, M. |

|
|
Title  |
Artificial lighting triggers the presence of urban spiders and their webs on historical buildings |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Landscape and Urban Planning |
Abbreviated Journal |
Landscape and Urban Planning |
|
|
Volume |
180 |
Issue |
|
Pages |
187-194 |
|
|
Keywords |
Animals; Lighting |
|
|
Abstract |
Different spider species living in the urban environment spin their webs on building facades. Due to air pollution, web aggregations entrap dirt particles over time, assuming a brownish-greyish colouration and thus determining an aesthetic impact on buildings and street furniture. In Europe, the most common species causing such an aesthetic nuisance is Brigittea civica (Lucas) (Dictynidae). In spite of the socio-economical relevance of the problem, the ecological factors driving the proliferation of this species in the urban environment are poorly described and the effectiveness of potential cleaning activities has never been discussed in scientific literature. Over one year, we studied the environmental drivers of B. civica webs in the arcades of the historical down-town district of Turin (NW-Italy). We selected a number of sampling plots on arcade ceilings and we estimated the density of B. civica webs by means of digital image analysis. In parallel, we collected information on a number of potential explanatory variables driving the arcade colonization, namely artificial lighting at night, substrate temperature, distance from the main artificial light sources and distance from the river. Regression analysis showed that the coverage of spider webs increased significantly at plots with higher light intensity, with a major effect related to the presence of historical lampposts with incandescent lamps rather than halogen lamps. We also detected a seasonal variation in the web coverage, with significant higher values in summer. Stemming from our results, we are able to suggest good practices for the containment of this phenomenon. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0169-2046 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2002 |
|
Permanent link to this record |