toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gibbons, R.; Terry, T.; Bhagavathula, R.; Meyer, J.; Lewis, A. url  doi
openurl 
  Title (up) Applicability of mesopic factors to the driving task Type Journal Article
  Year 2015 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology  
  Volume 48 Issue 1 Pages 70-82  
  Keywords Lighting; Public Safety; Planning  
  Abstract With the advent of light-emitting diode technology being applied to roadway lighting, the spectral power distribution of the light source is becoming much more important. In this experiment, the detection of pedestrians at five adaptation levels under three light sources, high pressure sodium and light emitting diodes of two colour temperatures was measured in realistic roadway scenarios. The results show that while the light source type was not significant, an increase in adaptation luminance increased the detection distance. As the offset of the object to the roadway increased, some spectral effects became more significant; however, this effect was not consistent across all angles of eccentricity. The conclusions from this work indicate that mesopic factors may not be applicable on high-speed roads.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1382  
Permanent link to this record
 

 
Author Farkas, T.D.; Kiràly, T.; Pardy, T.; Rang, T.; Rang, G. url  doi
openurl 
  Title (up) Application of power line communication technology in street lighting control Type Journal Article
  Year 2018 Publication International Journal of Design & Nature and Ecodynamics Abbreviated Journal Int. J. DNE  
  Volume 13 Issue 2 Pages 176-186  
  Keywords Lighting  
  Abstract Rapidly increasing usage of telecommunication systems causes new transmission technologies and networks to emerge. Not only the efficiency, reliability and accessibility of the network are important, but also the economic issues. One cost-effective solution could be power line communication (PLC) technology, which transmits data using the existing electricity infrastructure. The application of this communication technique is an attractive and innovative solution for the realization of smart cities and smart homes. With intelligent control networks, energy savings can be optimized and the operating as well as maintenance costs can be reduced. Since outdoor lighting systems are the major consumers of electricity, to create a modern, energy-efficient city, intelligent street lighting control is needed. This paper provides an overview of power line communication principles including the theoretical background of data communication, modulation techniques, channel access methods, protocols, disturbances and noises. Furthermore, in order to highlight the benefits of a PLC-based street lighting control system, a pilot project will be presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-7437 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2091  
Permanent link to this record
 

 
Author Dick, R. url  doi
openurl 
  Title (up) Applied scotobiology in luminaire design Type Journal Article
  Year 2014 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology  
  Volume 46 Issue 1 Pages 50-66  
  Keywords Lighting  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 576  
Permanent link to this record
 

 
Author Dominoni, D.; Quetting, M.; Partecke, J. url  doi
openurl 
  Title (up) Artificial light at night advances avian reproductive physiology Type Journal Article
  Year 2013 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 280 Issue 1756 Pages 20123017  
  Keywords Animals; *Lighting; Male; Molting; Photoperiod; Reproduction/*physiology; Singing; Songbirds/*physiology; Testis/anatomy & histology; Testosterone/blood; Trees  
  Abstract Artificial light at night is a rapidly increasing phenomenon and it is presumed to have global implications. Light at night has been associated with health problems in humans as a consequence of altered biological rhythms. Effects on wild animals have been less investigated, but light at night has often been assumed to affect seasonal cycles of urban dwellers. Using light loggers attached to free-living European blackbirds (Turdus merula), we first measured light intensity at night which forest and city birds are subjected to in the wild. Then we used these measurements to test for the effect of light at night on timing of reproductive physiology. Captive city and forest blackbirds were exposed to either dark nights or very low light intensities at night (0.3 lux). Birds exposed to light at night developed their reproductive system up to one month earlier, and also moulted earlier, than birds kept under dark nights. Furthermore, city birds responded differently than forest individuals to the light at night treatment, suggesting that urbanization can alter the physiological phenotype of songbirds. Our results emphasize the impact of human-induced lighting on the ecology of millions of animals living in cities and call for an understanding of the fitness consequences of light pollution.  
  Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell 78315, Germany. ddominoni@orn.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23407836; PMCID:PMC3574380 Approved no  
  Call Number IDA @ john @ Serial 50  
Permanent link to this record
 

 
Author Rund, S.S.C.; Labb, L.F.; Benefiel, O.M.; Duffield, G.E. url  doi
openurl 
  Title (up) Artificial Light at Night Increases Aedes aegypti Mosquito Biting Behavior with Implications for Arboviral Disease Transmission Type Journal Article
  Year 2020 Publication The American Journal of Tropical Medicine and Hygiene Abbreviated Journal Am J Trop Med Hyg  
  Volume 103 Issue 6 Pages 2450-2452  
  Keywords Animals; Insects; Aedes/*radiation effects; Animals; Arbovirus Infections/*transmission; Circadian Rhythm/*radiation effects; Feeding Behavior/*radiation effects; Humans; Insect Bites and Stings; *Lighting; Mosquito Control; Mosquito Vectors; mosquitos; Aedes aegypti  
  Abstract Aedes aegypti mosquito is a major vector of arboviral disease. Here, we report that the biting behavior of normally daytime active anthropophilic Ae. aegypti mosquitoes on human hosts is abnormally increased at night following exposure to artificial light at night (ALAN). Biting was examined using a human host assay where caged mosquitoes were exposed to a human arm and blood-feeding measured. Mosquitoes were tested during the daytime, nighttime, or challenged with ALAN. As predicted from the Ae. aegypti diel/circadian biting cycle, maximal biting occurred during daytime and lowest level occurred at night. Biting in the ALAN group was increased compared with time-matched nighttime controls. These data reveal that exposure to ALAN increases nocturnal blood-feeding behavior. This finding highlights the concern that globally increasing levels of light pollution could be impacting arboviral disease transmission, such as dengue fever and Zika, and has implications for application of countermeasures for mosquito vector control.  
  Address Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana; duffield.2 ( at ) nd.edu  
  Corporate Author Thesis  
  Publisher American Journal of Tropical Medicine and Hygiene Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9637 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:33069264; PMCID:PMC7695055 Approved no  
  Call Number IDA @ john @ Serial 3371  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: