toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Rea, M.; Skinner, N.; Bullough, J. url  doi
openurl 
  Title A Novel Barricade Warning Light System Using Wireless Communications Type Journal Article
  Year 2018 Publication SAE Technical Paper 2018-01-5036 Abbreviated Journal  
  Volume In press Issue Pages  
  Keywords Lighting; Safety  
  Abstract Workers in construction and transportation sectors are at increased risk for work-related injuries and fatalities by nearby traffic. Barricade-mounted warning lights meeting current specifications do not always provide consistent and adequate visual guidance to drivers and can contribute to glare and reduced safety. Through an implementation of sensors and wireless communications, a novel, intelligent set of warning lights and a tablet-based interface were developed. The lights modulate between 100% and 10% of maximum intensity rather than between 100% and off in order to improve visual guidance and adjust their overall intensity based on ambient conditions. The lights can be synchronized or operated in sequential flash patterns at any frequency between 1 and 4 Hz, and sequential patterns automatically update based on global positioning satellite (GPS) locations displayed in the control interface. A successful field demonstration of the system verified that its functions were viewed favorably by transportation safety personnel.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2117  
Permanent link to this record
 

 
Author Clanton, N.; Gibbons, R.; Garcia, J.; Barber, M. url  doi
openurl 
  Title Seattle LED Adaptive Lighting Study Type Report
  Year 2014 Publication Northwest Energy Efficiency Alliance Abbreviated Journal NEEA  
  Volume Issue E14-286 Pages  
  Keywords Public Safety; Lighting; Planning; Vision  
  Abstract The Northwest Energy Efficiency Alliance (NEEA) and the City of Seattle partnered to evaluate the future of solid state street lighting in the Pacific Northwest with a two-night demonstration in Seattle's Ballard neighborhood in March 2012. The study evaluates the effectiveness of LED streetlights on nighttime driver object detection visibility as function of light source spectral distribution (color temperature in degrees K) and light distribution. Clanton & Associates and VTTI also evaluated adaptive lighting (tuning of streetlights during periods of reduced vehicular and pedestrian activity) at three levels: one hundred percent of full light output, fifty percent of full light output, and twenty-five percent of full light output. The study, led by Clanton & Associates, Continuum Industries, and the VTTI, built upon previous visual performance studies conducted in Anchorage, Alaska; San Diego, California; and San Jose, California. The use of LED technology for city street lighting is becoming more widespread. While these lights are primarily touted for their energy efficiency, the combination of LEDs with advanced control technology, changes to lighting criteria, and a better understanding of human mesopic (low light level) visibility creates an enormous potential for energy savings and improved motorist and pedestrian visibility and safety. Data from these tests support the following statements: LED luminaires with a correlated color temperature of 4100K provide the highest detection distance, including statistically significantly better detection distance when compared to HPS luminaires of higher wattage. The non-uniformity of the lighting on the roadway surface provides a visibility enhancement and greater contrast for visibility. Contrast of objects, both positive and negative, is a better indicator of visibility than is average luminance level. Dimming the LED luminaires to fifty percent of IES RP-8 levels did not significantly reduce object detection distance in dry pavement conditions. Participants perceived dimming of sidewalks as less acceptable than dimming to the same level on the roadway. Asymmetric lighting did reduce glare and performed similarly to the symmetric lighting at the same color temperature (4100K).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1763  
Permanent link to this record
 

 
Author Kinzey, B. R.; Smalley, E.; Ghosh, S.; Tuenge, J. R.; Pipkin, A.; Trevino, K. url  doi
openurl 
  Title Lighting and Power Upgrade Recommendations for U.S. National Park Service Caribbean Units Type Journal Article
  Year 2019 Publication National Park Service Caribbean Units Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting; Conservation; Ecology; Skyglow; Planning  
  Abstract The U.S. National Park Service (NPS) maintains and operates numerous park units along the Eastern Seaboard of the United States, extending into the Caribbean to Commonwealth territories like Puerto Rico and the U.S. Virgin Islands (USVI). Several of these units were in the direct path of hurricanes Irma and Maria during the 2017 hurricane season and suffered considerable damage, including power outages, structural damage, and destroyed equipment. In February 2018, a task force deployed to three locations in the Caribbean to assess hurricane damage to the existing lighting systems and energy infrastructure. The primary objective was providing related recommendations for resiliency upgrades to the lighting and electrical supply systems, with special added emphasis on the numerous goals, objectives, and requirements of the NPS (such as protecting night skies, wildlife, wilderness character, cultural resources, etc.). Numerous opportunities exist for simultaneously increasing resiliency and preserving natural environments within these sensitive locations, and technological approaches that work in the extreme conditions encountered here should readily translate to many other less complex sites across the greater park system. Ultimately, care and attention to detail in implementation are the most important underlying requirements for success across the myriad needs likely encountered at these sites, once commitment to resolving them has been secured  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2626  
Permanent link to this record
 

 
Author Babadi, S.; Ramirez-Inguiez, R.; Boutaleb, T.; Mallick, T. url  doi
openurl 
  Title Producing uniform illumination within a rectangular area by using a nonimaging optic Type Journal Article
  Year 2018 Publication Applied Optics Abbreviated Journal Appl. Opt.  
  Volume 57 Issue 31 Pages 9357  
  Keywords Lighting  
  Abstract This paper proposes a new design method to create a novel optical element to generate uniform illumination within a rectangular area. Based on this model, an illuminated area is irradiated by two sets of rays; the first one irradiates the target plane after refraction from the top section of the lens, and the second one irradiates from the reflection at the side profile of the lens and then from refraction at the top part of the lens. The results show that a uniformity of over 90% can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1559-128X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2046  
Permanent link to this record
 

 
Author Wren, W.; Locke, S. url  doi
openurl 
  Title Upgraded Rig Lighting Improves Night Time Visibility While Reducing Stray Light and the Threat to Dark Skies in West Texas Type Conference Article
  Year 2015 Publication Society of Petroleum Engineers Abbreviated Journal Soc. Petrol. Engr.  
  Volume Issue Pages  
  Keywords Lighting; outdoor lighting; petroleum; oil and gas; lighting engineering  
  Abstract McDonald Observatory, part of the University of Texas at Austin, is a world-class astronomical-research facility representing hundreds of millions of dollars of public and private investment that is increasingly threatened by nighttime lighting from oil-and-gas-related activities in and around the Permian Basin. Established in the remote Davis Mountains of West Texas in 1932, the observatory is home to some of the world's largest telescopes and it has continued as a world-renowned research center. Dark night skies are crucial to its mission. Since 2010, however, the sky along the observatory's northern horizon, in the direction of the Permian Basin, has been steadily and rapidly brightening, due to new exploration for oil and gas. The pace has been accelerating: More than 2,000 applications were filed over the past year to drill in the region. In 2011, the State of Texas enacted a law that instructs the seven counties surrounding McDonald Observatory, an area covering some 28,000 square miles, to adopt outdoor lighting ordinances designed to preserve the dark night skies for ongoing astronomical research at the observatory. Most had already done so voluntarily, but additional effort is needed throughout the area to address fast-moving energy-exploration activities.

A joint project between McDonald Observatory and Pioneer Energy Services (PES) has demonstrated that many of the adverse effects of oilfield lighting can be mitigated, without jeopardizing safety, through proper shielding and aiming of light fixtures. Beginning July, 2013, PES granted the observatory access to a working rig, Pioneer Rig #29. Every time the rig moved to a new location, there was an opportunity to install shields, re-aim floodlights, and evaluate effectiveness.

This joint project demonstrated that, in many cases, nighttime visibility on the rig can be significantly improved. Many light fixtures, which had been sources of blinding glare due to of lack of shielding, poor placement, or poor aiming, were made better and safer, using optional glare shields that are offered by manufacturers for a variety of fixture models. Proper shielding and aiming of existing fixtures improves visibility and reduces wasted uplight. New lighting systems that take advantage of light-emitting-diode technology also promise better directionality, reduced fuel consumption, and darker skies overhead.

The oil-and-gas industry has been lighting its exploration and production activities in much same way for more than 100 years, with little to no consideration of environmental impacts. The opportunity exists to adopt new lighting practices and technologies that improve safety, reduce costs, and help preserve our vanishing night skies so that important ongoing scientific exploration can continue.
 
  Address  
  Corporate Author Thesis  
  Publisher Society of Petroleum Engineers Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SPE E&P Health, Safety, Security and Environmental Conference-Americas held in Denver, Colorado, USA, 16–18 March 2015 Approved no  
  Call Number IDA @ john @ Serial 1993  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: