toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Marchant, P. url  doi
openurl 
  Title Do brighter, whiter street lights improve road safety? Type Journal Article
  Year (down) 2019 Publication Significance Abbreviated Journal Significance  
  Volume 16 Issue 5 Pages 8-9  
  Keywords Public Safety; Lighting; Statistics  
  Abstract Would a billion‐dollar investment in improved street lighting make Australian roads safer at night? Paul Marchant finds the evidence wanting  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1740-9705 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2686  
Permanent link to this record
 

 
Author Mammola, S.; Isaia, M.; Demonte, D.; Triolo, P.; Nervo, M. url  doi
openurl 
  Title Artificial lighting triggers the presence of urban spiders and their webs on historical buildings Type Journal Article
  Year (down) 2018 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning  
  Volume 180 Issue Pages 187-194  
  Keywords Animals; Lighting  
  Abstract Different spider species living in the urban environment spin their webs on building facades. Due to air pollution, web aggregations entrap dirt particles over time, assuming a brownish-greyish colouration and thus determining an aesthetic impact on buildings and street furniture. In Europe, the most common species causing such an aesthetic nuisance is Brigittea civica (Lucas) (Dictynidae). In spite of the socio-economical relevance of the problem, the ecological factors driving the proliferation of this species in the urban environment are poorly described and the effectiveness of potential cleaning activities has never been discussed in scientific literature. Over one year, we studied the environmental drivers of B. civica webs in the arcades of the historical down-town district of Turin (NW-Italy). We selected a number of sampling plots on arcade ceilings and we estimated the density of B. civica webs by means of digital image analysis. In parallel, we collected information on a number of potential explanatory variables driving the arcade colonization, namely artificial lighting at night, substrate temperature, distance from the main artificial light sources and distance from the river. Regression analysis showed that the coverage of spider webs increased significantly at plots with higher light intensity, with a major effect related to the presence of historical lampposts with incandescent lamps rather than halogen lamps. We also detected a seasonal variation in the web coverage, with significant higher values in summer. Stemming from our results, we are able to suggest good practices for the containment of this phenomenon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-2046 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2002  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title Towards a Comprehensive City Emission Function (CCEF) Type Journal Article
  Year (down) 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 205 Issue Pages 253-266  
  Keywords Lighting; Skyglow  
  Abstract The comprehensive city emission function (CCEF) is developed for a heterogeneous light-emitting or blocking urban environments, embracing any combination of input parameters that characterize linear dimensions in the system (size and distances between buildings or luminaires), properties of light-emitting elements (such as luminous building façades and street lighting), ground reflectance and total uplight-fraction, all of these defined for an arbitrarily sized 2D area. The analytical formula obtained is not restricted to a single model class as it can capture any specific light-emission feature for wide range of cities. The CCEF method is numerically fast in contrast to what can be expected of other probabilistic approaches that rely on repeated random sampling. Hence the present solution has great potential in light-pollution modeling and can be included in larger numerical models. Our theoretical findings promise great progress in light-pollution modeling as this is the first time an analytical solution to city emission function (CEF) has been developed that depends on statistical mean size and height of city buildings, inter-building separation, prevailing heights of light fixtures, lighting density, and other factors such as e.g. luminaire light output and light distribution, including the amount of uplight, and representative city size. The model is validated for sensitivity and specificity pertinent to combinations of input parameters in order to test its behavior under various conditions, including those that can occur in complex urban environments. It is demonstrated that the solution model succeeds in reproducing a light emission peak at some elevated zenith angles and is consistent with reduced rather than enhanced emission in directions nearly parallel to the ground.  
  Address  
  Corporate Author Thesis  
  Publisher ScienceDirect Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1757  
Permanent link to this record
 

 
Author S Fotios, J Uttley url  doi
openurl 
  Title Illuminance required to detect a pavement obstacle of critical size Type Journal Article
  Year (down) 2018 Publication Lighting Research & Technology Abbreviated Journal  
  Volume 50 Issue Pages 390-404  
  Keywords Vision; Lighting  
  Abstract This paper investigates the illuminance needed to detect trip hazards for pedestrians walking after dark. In previous work, it was assumed that the critical obstacle height is 25 mm: further review of accident data and foot clearance data suggests instead that 10 mm is the critical height. Eye tracking records suggest a tendency for obstacles to be detected approximately 3.4 m ahead. Interpretation of obstacle detection data suggests horizontal photopic illuminances of up to 0.9 lux are required for peripheral detection of a 10 mm obstacle 3.4 m ahead, according to the scotopic/photopic ratio of the lighting and the age of the observer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1765  
Permanent link to this record
 

 
Author Fotios, S.; Gibbons, R. url  doi
openurl 
  Title Road lighting research for drivers and pedestrians: The basis of luminance and illuminance recommendations Type Journal Article
  Year (down) 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology  
  Volume 50 Issue 1 Pages 154-186  
  Keywords Security; Public Safety; Lighting; Review  
  Abstract This article discusses quantitative recommendations for road lighting as given in guidelines and standards, primarily, the amount of light. The discussion is framed according to the type of road user, the driver and the pedestrian, these being the user groups associated with major and minor roads, respectively. Presented first is a brief history of road lighting standards, from early to current versions, and, where known, the basis of these standards. Recommendations for the amount of light do not appear to be well-founded in robust empirical evidence, or at least do not tend to reveal the nature of any evidence. This suggests a need to reconsider recommended light levels, a need reinforced by recent developments in the science and technology of lighting and of lighting research. To enable improved recommendations, there is a need for further evidence of the effects of changes in lighting: This article therefore discusses the findings of investigations, which might be considered when developing new standards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1790  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: