|   | 
Details
   web
Records
Author Ardavani O.
Title Alternatives to artificial lighting: Varying patterns of bio-light in architecture Type Journal Article
Year (down) 2020 Publication Archidoct Abbreviated Journal
Volume 8 Issue 1 Pages 80-91
Keywords Lighting
Abstract The notion of variability is identical to the phenomenon of light.The present paper examines characteristics that shape this variability, in all forms of light, both natural and artificial, as well as light that is experimentally produced in a laboratory environment, through genetic modification of plants, in line with current trend of architectural fluidity. At a time when architecture is interacting with emerging technologies by creating parametrically changing shells and environments, that are evolving as biological models and organisms, lighting is becoming a tool for highlighting forms while ensuring the functionality of spaces. It is up to the designer to manage these variables of light in an inspired way, in order to create an elegant, sustainable and environmentally friendly environment for all beings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2309-0103 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number UP @ altintas1 @ Serial 3223
Permanent link to this record
 

 
Author Kretzer, D. M.; Walczak, M.
Title The Impact of Vertical Densification on Public Lighting in Informal Settlements: Using Virtual Environments as an Evaluation Tool for Policy Making Type Journal Article
Year (down) 2020 Publication Athens Journal of Architecture Abbreviated Journal
Volume Issue Pages in press
Keywords Lighting
Abstract There are a variety of reasons to support the premise that public lighting is beneficial to urban communities. At the same time, a key challenge for the provision of public lighting in informal settlements is their constant physical transformation. The aim of this paper is to evaluate the application of virtual environments (VEs) in lighting planning and policy making. Despite the fact that VEs offer the opportunity to explore an environment by freely navigating through it, including environments that change over time, this feature is rarely taken into account in decision-making processes. A VE-based analysis tool for informal settlement lighting is presented using a case-study street in the informal settlement of Caracolí in Bogotá as its basis. The main data set for the VE scenarios was comprised of results from a household survey, spatial measurements, and participant observations as well as luminous intensity distribution curves. The household survey was used to collect time-related data on the incremental construction of Caracoli's informal dwellings, which was then projected into past, present, and future night-time scenarios. The lighting quality of these different scenarios was systematically evaluated via lighting calculation software, revealing a variety of shortcomings caused by the current lighting approach. Based on these findings, an alternative lighting approach was developed and re-examined using lighting calculations. Finally, custom game-engine technology and GPU computing were deployed, which allowed for real-time visualisation of the different lighting scenarios and their lighting quality. This setup therefore enables fast iterative feedback loops for current and future lighting policy scenarios and the resulting lighting design. In the first instance, a VE can illustrate well how current lighting policy results in a significant delay of lighting provision in the early stage of a settlement as well as highlight the mismatch between lighting technology and the built environment during the vertical densification phases. Second, the VE is able to showcase alternative lighting technologies and policy approaches as well as the resulting lighting effects, enabling a visual comparison of different policy scenarios over several decades. In conclusion it will be argued that the dynamic VE technology appears to be a promising decision-making tool for illustrating potential planning and design shortcomings to policy stakeholders in a manner understandable to the layman.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number UP @ altintas1 @ Serial 3226
Permanent link to this record
 

 
Author Clarke, R.B.; Amini, H.; James, P.; von Euler-Chelpin, M.; Jorgensen, J.T.; Mehta, A.; Cole-Hunter, T.; Westendorp, R.; Mortensen, L.H.; Loft, S.; Brandt, J.; Hertel, O.; Ketzel, M.; Backalarz, C.; Andersen, Z.J.; Lim, Y.-H.
Title Outdoor light at night and breast cancer incidence in the Danish Nurse Cohort Type Journal Article
Year (down) 2020 Publication Environmental Research Abbreviated Journal Environ Res
Volume 194 Issue Pages 110631
Keywords Human health; Remote sensing; Breast neoplasms; Environmental exposure; Female; Incidence; Lighting; Middle-aged; Prospective studies; Risk factors
Abstract BACKGROUND: Knowledge of the role of melatonin, xenograft experiments, and epidemiological studies suggests that exposure to light at night (LAN) may disturb circadian rhythms, possibly increasing the risk of developing breast cancer. OBJECTIVES: We examined the association between residential outdoor LAN and the incidence of breast cancer: overall and subtypes classified by estrogen (ER) and progesterone (PR) receptor status. METHODS: We used data on 16,941 nurses from the Danish Nurse Cohort who were followed-up from the cohort baseline in 1993 or 1999 through 2012 in the Danish Cancer Registry for breast cancer incidence and the Danish Breast Cancer Cooperative Group for breast cancer ER and PR status. LAN exposure data were obtained from the U.S. Defense Meteorological Satellite Program (DMSP) available for 1996, 1999, 2000, 2003, 2004, 2006, and 2010 in nW/cm(2)/sr unit, and assigned to the study participants' residence addresses during the follow-up. Time-varying Cox regression models were used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between LAN and breast cancer, adjusting for individual characteristics, road traffic noise, and air pollution. RESULTS: Of 16,941 nurses, 745 developed breast cancer in total during 320,289 person-years of follow-up. We found no association between exposure to LAN and overall breast cancer. In the fully adjusted models, HRs for the highest (65.8-446.4 nW/cm(2)/sr) and medium (22.0-65.7 nW/cm(2)/sr) LAN tertiles were 0.97 (95% CI: 0.77, 1.23) and 1.09 (95% CI: 0.90, 1.31), respectively, compared to the lowest tertile of LAN exposure (0-21.9 nW/cm(2)/sr). We found a suggestive association between LAN and ER-breast cancer. CONCLUSION: This large cohort study of Danish female nurses suggests weak evidence of the association between LAN and breast cancer incidence.
Address Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Seoul National University Medical Research Center, Seoul, Republic of Korea. Electronic address: younhee.lim@sund.ku.dk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-9351 ISBN Medium
Area Expedition Conference
Notes PMID:33345898 Approved no
Call Number GFZ @ kyba @ Serial 3256
Permanent link to this record
 

 
Author Falchi, F.; Bará, S.
Title A linear systems approach to protect the night sky: implications for current and future regulations Type Journal Article
Year (down) 2020 Publication Royal Society Open Science Abbreviated Journal R. Soc. open sci.
Volume 7 Issue 12 Pages 201501
Keywords Skyglow; Regulation; Lighting
Abstract The persistent increase of artificial light emissions is causing a progressive brightening of the night sky in most regions of the world. This process is a threat for the long-term sustainability of the scientific and educational activity of ground-based astronomical observatories operating in the optical range. Huge investments in building, scientific and technical workforce, equipment and maintenance can be at risk if the increasing light pollution levels hinder the capability of carrying out the top-level scientific observations for which these key scientific infrastructures were built. Light pollution has other negative consequences, as e.g. biodiversity endangering and the loss of the starry sky for recreational, touristic and preservation of cultural heritage. The traditional light pollution mitigation approach is based on imposing conditions on the photometry of individual sources, but the aggregated effects of all sources in the territory surrounding the observatories are seldom addressed in the regulations. We propose that this approach shall be complemented with a top-down, ambient artificial skyglow immission limits strategy, whereby clear limits are established to the admissible deterioration of the night sky above the observatories. We describe the general form of the indicators that can be employed to this end, and develop linear models relating their values to the artificial emissions across the territory. This approach can be easily applied to other protection needs, like e.g. to protect nocturnal ecosystems, and it is expected to be useful for making informed decisions on public lighting, in the context of wider spatial planning projects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2054-5703 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3260
Permanent link to this record
 

 
Author Gagliardi, G.; Lupia, M.; Cario, G.; Tedesco, F.; Cicchello Gaccio, F.; Lo Scudo, F.; Casavola, A.
Title Advanced Adaptive Street Lighting Systems for Smart Cities Type Journal Article
Year (down) 2020 Publication Smart Cities Abbreviated Journal Smart Cities
Volume 3 Issue 4 Pages 1495-1512
Keywords Lighting; Energy
Abstract This paper reports the results of a recently concluded R&D project, SCALS (Smart Cities Adaptive Lighting System), which aimed at the development of all hardware/software components of an adaptive urban smart lighting architecture allowing municipalities to manage and control public street lighting lamps. The system is capable to autonomously adjust street lamps’ brightness on the basis of the presence of vehicles (busses/trucks, cars, motorcycles and bikes) and/or pedestrians in specific areas or segments of the streets/roads of interest to reduce the energy consumption. The main contribution of this work is to design a low cost smart lighting system and, at same time, to define an IoT infrastructure where each lighting pole is an element of a network that can increase their amplitude. More generally, the proposed smart infrastructure can be viewed as the basis of a wider technological architecture aimed at offering value-added services for sustainable cities. The smart architecture combines various sub-systems (local controllers, motion sensors, video-cameras, weather sensors) and electronic devices, each of them in charge of performing specific operations: remote street segments lamp management, single street lamp brightness control, video processing for vehicles motion detection and classification, wireless and wired data exchanges, power consumptions analysis and traffic evaluation. Two pilot sites have been built up in the project where the smart architecture has been tested and validated in real scenarios. Experimental results show that energy savings of up to 80% are possible compared to a traditional street lamp system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2624-6511 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3274
Permanent link to this record