toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author West, K.E.; Jablonski, M.R.; Warfield, B.; Cecil, K.S.; James, M.; Ayers, M.A.; Maida, J.; Bowen, C.; Sliney, D.H.; Rollag, M.D.; Hanifin, J.P.; Brainard, G.C. url  doi
openurl 
  Title Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans Type Journal Article
  Year (up) 2011 Publication Journal of Applied Physiology (Bethesda, Md. : 1985) Abbreviated Journal J Appl Physiol (1985)  
  Volume 110 Issue 3 Pages 619-626  
  Keywords Circadian Rhythm/*physiology/*radiation effects; Color; Dose-Response Relationship, Radiation; Humans; Lighting/*methods; Melatonin/*blood; Metabolic Clearance Rate/radiation effects; Photic Stimulation/*methods; Radiation Dosage; Retina/*physiology/*radiation effects; Semiconductors; Young Adult; blue light  
  Abstract Light suppresses melatonin in humans, with the strongest response occurring in the short-wavelength portion of the spectrum between 446 and 477 nm that appears blue. Blue monochromatic light has also been shown to be more effective than longer-wavelength light for enhancing alertness. Disturbed circadian rhythms and sleep loss have been described as risk factors for astronauts and NASA ground control workers, as well as civilians. Such disturbances can result in impaired alertness and diminished performance. Prior to exposing subjects to short-wavelength light from light-emitting diodes (LEDs) (peak lambda = 469 nm; 1/2 peak bandwidth = 26 nm), the ocular safety exposure to the blue LED light was confirmed by an independent hazard analysis using the American Conference of Governmental Industrial Hygienists exposure limits. Subsequently, a fluence-response curve was developed for plasma melatonin suppression in healthy subjects (n = 8; mean age of 23.9 +/- 0.5 years) exposed to a range of irradiances of blue LED light. Subjects with freely reactive pupils were exposed to light between 2:00 and 3:30 AM. Blood samples were collected before and after light exposures and quantified for melatonin. The results demonstrate that increasing irradiances of narrowband blue-appearing light can elicit increasing plasma melatonin suppression in healthy subjects (P < 0.0001). The data were fit to a sigmoidal fluence-response curve (R(2) = 0.99; ED(50) = 14.19 muW/cm(2)). A comparison of mean melatonin suppression with 40 muW/cm(2) from 4,000 K broadband white fluorescent light, currently used in most general lighting fixtures, suggests that narrow bandwidth blue LED light may be stronger than 4,000 K white fluorescent light for suppressing melatonin.  
  Address Dept. of Neurology, Thomas Jefferson Univ., Philadelphia, Pennsylvania 19107, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0161-7567 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21164152 Approved no  
  Call Number IDA @ john @ Serial 287  
Permanent link to this record
 

 
Author Cajochen, C.; Frey, S.; Anders, D.; Spati, J.; Bues, M.; Pross, A.; Mager, R.; Wirz-Justice, A.; Stefani, O. url  doi
openurl 
  Title Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance Type Journal Article
  Year (up) 2011 Publication Journal of Applied Physiology (Bethesda, Md. : 1985) Abbreviated Journal J Appl Physiol (1985)  
  Volume 110 Issue 5 Pages 1432-1438  
  Keywords Adult; Circadian Rhythm/*physiology/radiation effects; Cognition/*physiology/radiation effects; *Computer Terminals; Humans; Light; Lighting/*methods; Male; Photic Stimulation/*methods; Radiation Dosage; Semiconductors; *Task Performance and Analysis; Young Adult; blue light; sleep; circadian disruption  
  Abstract Many people spend an increasing amount of time in front of computer screens equipped with light-emitting diodes (LED) with a short wavelength (blue range). Thus we investigated the repercussions on melatonin (a marker of the circadian clock), alertness, and cognitive performance levels in 13 young male volunteers under controlled laboratory conditions in a balanced crossover design. A 5-h evening exposure to a white LED-backlit screen with more than twice as much 464 nm light emission {irradiance of 0,241 Watt/(steradian x m(2)) [W/(sr x m(2))], 2.1 x 10(13) photons/(cm(2) x s), in the wavelength range of 454 and 474 nm} than a white non-LED-backlit screen [irradiance of 0,099 W/(sr x m(2)), 0.7 x 10(13) photons/(cm(2) x s), in the wavelength range of 454 and 474 nm] elicited a significant suppression of the evening rise in endogenous melatonin and subjective as well as objective sleepiness, as indexed by a reduced incidence of slow eye movements and EEG low-frequency activity (1-7 Hz) in frontal brain regions. Concomitantly, sustained attention, as determined by the GO/NOGO task; working memory/attention, as assessed by “explicit timing”; and declarative memory performance in a word-learning paradigm were significantly enhanced in the LED-backlit screen compared with the non-LED condition. Screen quality and visual comfort were rated the same in both screen conditions, whereas the non-LED screen tended to be considered brighter. Our data indicate that the spectral profile of light emitted by computer screens impacts on circadian physiology, alertness, and cognitive performance levels. The challenge will be to design a computer screen with a spectral profile that can be individually programmed to add timed, essential light information to the circadian system in humans.  
  Address Centre for Chronobiology, Psychiatric Hospitals of the University of Basel, Basel, Switzerland. christian.cajochen@upkbs.ch  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0161-7567 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21415172 Approved no  
  Call Number IDA @ john @ Serial 293  
Permanent link to this record
 

 
Author Johansson, M.; Rosen, M.; Kuller, R. url  doi
openurl 
  Title Individual factors influencing the assessment of the outdoor lighting of an urban footpath Type Journal Article
  Year (up) 2011 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology  
  Volume 43 Issue 1 Pages 31-43  
  Keywords footpath lighting; pathway lighting; outdoor lighting; lighting perception  
  Abstract During the hours of darkness, the mobility of young women, the elderly and the disabled is limited in urban areas. In a field study possible predictors of the perceived visual accessibility and the perceived danger of an urban footpath were investigated. Eighty-one people individually walked along the footpath after dark. They subjectively assessed the environment and answered a questionnaire about personality and socio-demographics. Visual accessibility was predicted by visual field, environmental trust and brightness. Danger was predicted by the pleasantness of the lighting, gender, brightness and environmental trust. Consequently, the influence of individual characteristics, including the subjective judgments of brightness and hedonic tone and the personality dimension of trust in the physical environment, should be considered in the design of exterior lighting for urban footpaths.  
  Address Environmental Psychology, Department of Architecture and Built Environment Lund University, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 334  
Permanent link to this record
 

 
Author Vetter, C.; Juda, M.; Lang, D.; Wojtysiak, A.; Roenneberg, T. url  openurl
  Title Blue-enriched office light competes with natural light as a zeitgeber Type Journal Article
  Year (up) 2011 Publication Scandinavian Journal of Work, Environment & Health Abbreviated Journal Scand J Work Environ Health  
  Volume 37 Issue 5 Pages 437-445  
  Keywords *Circadian Rhythm; *Color; Humans; *Lighting; *Occupational Health; Sleep; Wakefulness; blue light; circadian disruption; Circadian rhythm; sleep  
  Abstract OBJECTIVES: Circadian regulation of human physiology and behavior (eg, body temperature or sleep-timing), depends on the “zeitgeber” light that synchronizes them to the 24-hour day. This study investigated the effect of changing light temperature at the workplace from 4000 Kelvin (K) to 8000 K on sleep-wake and activity-rest behavior. METHODS: An experimental group (N=27) that experienced the light change was compared with a non-intervention group (N=27) that remained in the 4000 K environment throughout the 5-week study period (14 January to 17 February). Sleep logs and actimetry continuously assessed sleep-wake behavior and activity patterns. RESULTS: Over the study period, the timing of sleep and activity on free days steadily advanced parallel to the seasonal progression of sunrise in the non-intervention group. In contrast, the temporal pattern of sleep and activity in the experimental group remained associated with the constant onset of work. CONCLUSION: The results suggest that artificial blue-enriched light competes with natural light as a zeitgeber. While subjects working under the warmer light (4000 K) appear to entrain (or synchronize) to natural dawn, the subjects who were exposed to blue-enriched (8000 K) light appear to entrain to office hours. The results confirm that light is the dominant zeitgeber for the human clock and that its efficacy depends on spectral composition. The results also indicate that blue-enriched artificial light is a potent zeitgeber that has to be used with diligence.  
  Address Institute for Medical Psychology, Centre of Chronobiology, Ludwig-Maximilians-Universitat, Munich, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0355-3140 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21246176 Approved no  
  Call Number IDA @ john @ Serial 350  
Permanent link to this record
 

 
Author ILP Institution of Lightinging Professionals url  openurl
  Title GUIDANCE NOTES FOR THE REDUCTION OF OBTRUSIVE LIGHT Type Journal Article
  Year (up) 2011 Publication Notes Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords Lighting  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 637  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: