|   | 
Details
   web
Records
Author Stevens, R.G.
Title Artificial lighting in the industrialized world: circadian disruption and breast cancer Type Journal Article
Year 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal (up) Cancer Causes Control
Volume 17 Issue 4 Pages 501-507
Keywords Human Health; Alcohol Drinking/adverse effects; Animals; Breast Neoplasms/*etiology; Chronobiology Disorders/*etiology/physiopathology; Circadian Rhythm; Developing Countries; Female; Humans; Lighting/*adverse effects; Melatonin/metabolism; Risk Factors; Suprachiasmatic Nucleus/physiopathology
Abstract Breast cancer risk is high in industrialized societies, and increases as developing countries become more Westernized. The reasons are poorly understood. One possibility is circadian disruption from aspects of modern life, in particular the increasing use of electric power to light the night, and provide a sun-free environment during the day inside buildings. Circadian disruption could lead to alterations in melatonin production and in changing the molecular time of the circadian clock in the suprachiasmatic nuclei (SCN). There is evidence in humans that the endogenous melatonin rhythm is stronger for persons in a bright-day environment than in a dim-day environment; and the light intensity necessary to suppress melatonin at night continues to decline as new experiments are done. Melatonin suppression can increase breast tumorigenesis in experimental animals, and altering the endogenous clock mechanism may have downstream effects on cell cycle regulatory genes pertinent to breast tissue development and susceptibility. Therefore, maintenance of a solar day-aligned circadian rhythm in endogenous melatonin and in clock gene expression by exposure to a bright day and a dark night, may be a worthy goal. However, exogenous administration of melatonin in an attempt to achieve this goal may have an untoward effect given that pharmacologic dosing with melatonin has been shown to phase shift humans depending on the time of day it's given. Exogenous melatonin may therefore contribute to circadian disruption rather than alleviate it.
Address University of Connecticut Health Center, Farmington, CT 06030-6325, USA. bugs@neuron.uchc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-5243 ISBN Medium
Area Expedition Conference
Notes PMID:16596303 Approved no
Call Number LoNNe @ kagoburian @ Serial 818
Permanent link to this record
 

 
Author Peplonska, B.; Bukowska, A.; Sobala, W.; Reszka, E.; Gromadzinska, J.; Wasowicz, W.; Lie, J.A.; Kjuus, H.; Ursin, G.
Title Rotating night shift work and mammographic density Type Journal Article
Year 2012 Publication Cancer Epidemiology, Biomarkers & Prevention : a Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology Abbreviated Journal (up) Cancer Epidemiol Biomarkers Prev
Volume 21 Issue 7 Pages 1028-1037
Keywords Adult; Breast/*pathology; Breast Neoplasms/*etiology/*pathology; Circadian Rhythm/*physiology; Cross-Sectional Studies; Female; Humans; Melatonin/urine; Middle Aged; *Midwifery; *Nursing Staff; Questionnaires; Risk Factors; *Work Schedule Tolerance; oncogenesis
Abstract BACKGROUND: An increased risk of breast cancer has been observed in night shift workers. Exposure to artificial light at night and disruption of the endogenous circadian rhythm with suppression of the melatonin synthesis have been suggested mechanisms. We investigated the hypothesis that rotating night shift work is associated with mammographic density. METHODS: We conducted a cross-sectional study on the association between rotating night shift work characteristics, 6-sulfatoxymelatonin (MT6s) creatinine adjusted in a spot morning urine sample, and a computer-assisted measure of mammographic density in 640 nurses and midwives ages 40 to 60 years. The associations were evaluated using regression models adjusted for age, body mass index, menopausal status, age at menopause, age at menarche, smoking, and the calendar season of the year when mammography was conducted. RESULTS: The adjusted means of percentage of mammographic density and absolute density were slightly higher among women working rotating night shifts but not statistically significant [percentage of mammographic density = 23.6%, 95% confidence interval (CI), 21.9%-25.4% vs. 22.5%, 95% CI, 20.8%-24.3%; absolute density = 23.9 cm(2), 95% CI, 21.4-26.4 cm(2) vs. 21.8 cm(2), 95% CI, 19.4-24.3 cm(2) in rotating night shift and day shift nurses, respectively). There were no significant associations between the current or cumulative rotating night shift work exposure metrics and mammographic density. No association was observed between morning MT6s and mammographic density. CONCLUSIONS: The hypothesis on the link between rotating night shift work, melatonin synthesis disruption, and mammographic density is not supported by the results of the present study. IMPACT: It is unlikely that the development of breast cancer in nurses working rotating night shifts is mediated by an increase in mammographic density.
Address Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland. beatap@imp.lodz.pl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1055-9965 ISBN Medium
Area Expedition Conference
Notes PMID:22539602 Approved no
Call Number IDA @ john @ Serial 159
Permanent link to this record
 

 
Author Sigurdardottir, L.G.; Valdimarsdottir, U.A.; Fall, K.; Rider, J.R.; Lockley, S.W.; Schernhammer, E.; Mucci, L.A.
Title Circadian disruption, sleep loss, and prostate cancer risk: a systematic review of epidemiologic studies Type Journal Article
Year 2012 Publication Cancer Epidemiology, Biomarkers & Prevention : a Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology Abbreviated Journal (up) Cancer Epidemiol Biomarkers Prev
Volume 21 Issue 7 Pages 1002-1011
Keywords Human Health; Animals; Humans; Male; Prostatic Neoplasms/*epidemiology/*etiology; Risk Factors; *Sleep Disorders, Circadian Rhythm; *Work Schedule Tolerance
Abstract Disruption of the circadian system has been hypothesized to increase cancer risk, either because of direct disruption of the molecular machinery generating circadian rhythms or because of disruption of parameters controlled by the clock such as melatonin levels or sleep duration. This hypothesis has been studied in hormone-dependent cancers among women, but data are sparse about potential effects of circadian disruption on the risk of prostate cancer. This review systematically examines available data evaluating the effects of light at night, sleep patterns, and night shift work on prostate cancer risk.
Address Centre of Public Health Sciences, University of Iceland, Reykjavik, Iceland. lara@sessionimpossible.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1055-9965 ISBN Medium
Area Expedition Conference
Notes PMID:22564869; PMCID:PMC3392423 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 516
Permanent link to this record
 

 
Author Blask, D.E.; Brainard, G.C.; Dauchy, R.T.; Hanifin, J.P.; Davidson, L.K.; Krause, J.A.; Sauer, L.A.; Rivera-Bermudez, M.A.; Dubocovich, M.L.; Jasser, S.A.; Lynch, D.T.; Rollag, M.D.; Zalatan, F.
Title Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats Type Journal Article
Year 2005 Publication Cancer Research Abbreviated Journal (up) Cancer Res
Volume 65 Issue 23 Pages 11174-11184
Keywords Human Health; Animals; Breast Neoplasms/*blood/genetics/pathology; Cell Growth Processes/physiology; Circadian Rhythm/*physiology; Female; Humans; Light; Liver Neoplasms, Experimental/metabolism; Male; Melatonin/blood/*deficiency; Premenopause/blood; RNA, Messenger/biosynthesis/genetics; Rats; Rats, Nude; Receptors, Melatonin/biosynthesis/genetics; Transplantation, Heterologous
Abstract The increased breast cancer risk in female night shift workers has been postulated to result from the suppression of pineal melatonin production by exposure to light at night. Exposure of rats bearing rat hepatomas or human breast cancer xenografts to increasing intensities of white fluorescent light during each 12-hour dark phase (0-345 microW/cm2) resulted in a dose-dependent suppression of nocturnal melatonin blood levels and a stimulation of tumor growth and linoleic acid uptake/metabolism to the mitogenic molecule 13-hydroxyoctadecadienoic acid. Venous blood samples were collected from healthy, premenopausal female volunteers during either the daytime, nighttime, or nighttime following 90 minutes of ocular bright, white fluorescent light exposure at 580 microW/cm2 (i.e., 2,800 lx). Compared with tumors perfused with daytime-collected melatonin-deficient blood, human breast cancer xenografts and rat hepatomas perfused in situ, with nocturnal, physiologically melatonin-rich blood collected during the night, exhibited markedly suppressed proliferative activity and linoleic acid uptake/metabolism. Tumors perfused with melatonin-deficient blood collected following ocular exposure to light at night exhibited the daytime pattern of high tumor proliferative activity. These results are the first to show that the tumor growth response to exposure to light during darkness is intensity dependent and that the human nocturnal, circadian melatonin signal not only inhibits human breast cancer growth but that this effect is extinguished by short-term ocular exposure to bright, white light at night. These mechanistic studies are the first to provide a rational biological explanation for the increased breast cancer risk in female night shift workers.
Address Laboratory of Chrono-Neuroendocrine Oncology, Bassett Research Institute, The Mary Imogene Bassett Hospital, Cooperstown, New York 13326, USA. david.blask@bassett.org
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-5472 ISBN Medium
Area Expedition Conference
Notes PMID:16322268 Approved no
Call Number LoNNe @ kagoburian @ Serial 721
Permanent link to this record
 

 
Author Raiewski, E.E.; Elliott, J.A.; Evans, J.A.; Glickman, G.L.; Gorman, M.R.
Title Twice daily melatonin peaks in Siberian but not Syrian hamsters under 24 h light:dark:light:dark cycles Type Journal Article
Year 2012 Publication Chronobiology International Abbreviated Journal (up) Chronobiol Int
Volume 29 Issue 9 Pages 1206-1215
Keywords Animals; Circadian Rhythm/*physiology; Cricetinae; Male; Melatonin/blood/*secretion; Mesocricetus/blood/*physiology; Motor Activity/physiology; Phodopus/blood/*physiology; Photoperiod; Species Specificity
Abstract The daily pattern of blood-borne melatonin varies seasonally under the control of a multi-oscillator circadian pacemaker. Here we examine patterns of melatonin secretion and locomotor activity in Siberian and Syrian hamsters entrained to bimodal LDLD8:4:8:4 and LD20:4 lighting schedules that facilitate novel temporal arrangements of component circadian oscillators. Under LDLD, both species robustly bifurcated wheel-running activity in distinct day scotophase (DS) and night scotophase (NS) bouts. Siberian hamsters displayed significant melatonin increases during each scotophase in LDLD, and in the single daily scotophase of LD20:4. The bimodal melatonin secretion pattern persisted in acutely extended 16 h scotophases. Syrian hamsters, in contrast, showed no significant increases in plasma melatonin during either scotophase of LDLD8:4:8:4 or in LD20:4. In this species, detectable levels were observed only when the DS of LDLD was acutely extended to yield 16 h of darkness. Established species differences in the phase lag of nocturnal melatonin secretion relative to activity onset may underlie the above contrast: In non-bifurcated entrainment to 24 h LD cycles, Siberian hamsters show increased melatonin secretion within approximately 2 h after activity onset, whereas in Syrian hamsters, detectable melatonin secretion phase lags activity onset and the L/D transition by at least 4 h. The present results provide new evidence indicating multi-oscillator regulation of the waveform of melatonin secretion, specifically, the circadian control of the onset, offset and duration of nocturnal secretion.
Address Department of Psychology, and Center for Chronobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0109, USA. eraiewski@ucsd.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:23003567 Approved no
Call Number IDA @ john @ Serial 85
Permanent link to this record