toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kamrowski, R.L.; Sutton, S.G.; Tobin, R.C.; Hamann, M. url  doi
openurl 
  Title Potential applicability of persuasive communication to light-glow reduction efforts: a case study of marine turtle conservation Type Journal Article
  Year 2014 Publication Environmental Management Abbreviated Journal (up) Environ Manage  
  Volume 54 Issue 3 Pages 583-595  
  Keywords Society; Adolescent; Adult; Aged; Aged, 80 and over; Animals; *Conservation of Natural Resources; Culture; Female; Humans; *Lighting; Male; Middle Aged; Persuasive Communication; Public Opinion; Queensland; Questionnaires; *Turtles; Young Adult  
  Abstract Artificial lighting along coastlines poses a significant threat to marine turtles due to the importance of light for their natural orientation at the nesting beach. Effective lighting management requires widespread support and participation, yet engaging the public with light reduction initiatives is difficult because benefits associated with artificial lighting are deeply entrenched within modern society. We present a case study from Queensland, Australia, where an active light-glow reduction campaign has been in place since 2008 to protect nesting turtles. Semi-structured questionnaires explored community beliefs about reducing light and evaluated the potential for using persuasive communication techniques based on the theory of planned behavior (TPB) to increase engagement with light reduction. Respondents (n = 352) had moderate to strong intentions to reduce light. TPB variables explained a significant proportion of variance in intention (multiple regression: R (2) = 0.54-0.69, P < 0.001), but adding a personal norm variable improved the model (R (2) = 0.73-0.79, P < 0.001). Significant differences in belief strength between campaign compliers and non-compliers suggest that targeting the beliefs reducing light leads to “increased protection of local turtles” (P < 0.01) and/or “benefits to the local economy” (P < 0.05), in combination with an appeal to personal norms, would produce the strongest persuasion potential for future communications. Selective legislation and commitment strategies may be further useful strategies to increase community light reduction. As artificial light continues to gain attention as a pollutant, our methods and findings will be of interest to anyone needing to manage public artificial lighting.  
  Address School of Earth and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia, ruth.kamrowski(at)my.jcu.edu.au  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0364-152X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24957580 Approved no  
  Call Number IDA @ john @ Serial 1283  
Permanent link to this record
 

 
Author Cajochen, C.; Jud, C.; Munch, M.; Kobialka, S.; Wirz-Justice, A.; Albrecht, U. url  doi
openurl 
  Title Evening exposure to blue light stimulates the expression of the clock gene PER2 in humans Type Journal Article
  Year 2006 Publication The European Journal of Neuroscience Abbreviated Journal (up) Eur J Neurosci  
  Volume 23 Issue 4 Pages 1082-1086  
  Keywords Human Health; Adult; Color; Darkness; Dose-Response Relationship, Radiation; Female; Gene Expression/*radiation effects; Humans; *Light; Male; Melatonin/metabolism; Mucous Membrane/metabolism/radiation effects; Nuclear Proteins/genetics/*metabolism; Period Circadian Proteins; Transcription Factors/genetics/*metabolism  
  Abstract We developed a non-invasive method to measure and quantify human circadian PER2 gene expression in oral mucosa samples and show that this gene oscillates in a circadian (= about a day) fashion. We also have the first evidence that induction of human PER2 expression is stimulated by exposing subjects to 2 h of light in the evening. This increase in PER2 expression was statistically significant in comparison to a non-light control condition only after light at 460 nm (blue) but not after light exposure at 550 nm (green). Our results indicate that the non-image-forming visual system is involved in human circadian gene expression. The demonstration of a functional circadian machinery in human buccal samples and its response to light opens the door for investigation of human circadian rhythms at the gene level and their associated disorders.  
  Address Centre for Chronobiology, Psychiatric University Clinics, University of Basel, CH-4025 Basel, Switzerland. christian.cajochen@unibas.ch  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-816X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16519674 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 727  
Permanent link to this record
 

 
Author Arendt, J.; Middleton, B. url  doi
openurl 
  Title Human seasonal and circadian studies in Antarctica (Halley, 75 degrees S) Type Journal Article
  Year 2018 Publication General and Comparative Endocrinology Abbreviated Journal (up) Gen Comp Endocrinol  
  Volume 258 Issue Pages 250-258  
  Keywords Human Activities; Acclimatization/*physiology; Actigraphy; Adult; Antarctic Regions; Behavior/*physiology; Circadian Rhythm/*physiology; Darkness; Female; Heart Rate/physiology; Humans; Libido; Light; Male; Melatonin/blood; Photoperiod; *Seasons; Sleep/physiology; Young Adult; *Antarctica; *Circadian; *Light; *Melatonin; *Seasonal  
  Abstract Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75 degrees S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase delay of melatonin in winter was advanced to summer phase by a two pulse 'skeleton' bright white light treatment. Subsequently a single morning pulse of bright white light was effective with regard to circadian phase and improved daytime performance. The circadian delay evidenced by melatonin was accompanied by delayed sleep (logs and actigraphy): poor sleep is a common complaint in Polar regions. Appropriate extra artificial light, both standard white, and blue enriched, present throughout the day, effectively countered delay in sleep timing and the aMT6s rhythm. The most important factor appeared to be the maximum light experienced. Another manifestation of the winter was a decline in self-rated libido (men only on base at this time). Women on the base showed lower aspects of physical and mental health compared to men. Free-running rhythms were seen in some subjects following night shift, but were rarely found at other times, probably because this base has strongly scheduled activity and leisure time. Complete circadian adaptation during a week of night shift, also seen in a similar situation on North Sea oil rigs, led to problems readapting back to day shift in winter, compared to summer. Here again timed light treatment was used to address the problem. Sleep, alertness and waking performance are critically dependent on optimum circadian phase. Circadian desynchrony is associated with increased risk of major disease in shift workers. These studies provide some groundwork for countering/avoiding circadian desynchrony in rather extreme conditions.  
  Address Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK. Electronic address: b.middleton@surrey.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6480 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28526480 Approved no  
  Call Number IDA @ john @ Serial 2248  
Permanent link to this record
 

 
Author Reiter, R.J.; Tan, D.X.; Korkmaz, A.; Rosales-Corral, S.A. url  doi
openurl 
  Title Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology Type Journal Article
  Year 2014 Publication Human Reproduction Update Abbreviated Journal (up) Hum Reprod Update  
  Volume 20 Issue 2 Pages 293-307  
  Keywords Human Health; Animals; Antioxidants/physiology; Biological Clocks/physiology; Circadian Rhythm/*physiology; Female; Fetus/*physiology; Humans; Mammals; Melatonin/biosynthesis/*physiology; Mice; Oxidative Stress/physiology; Parturition/physiology; Placenta/metabolism/*physiology; Pre-Eclampsia/etiology/metabolism; Pregnancy; Uterus/metabolism; circadian rhythms; fetus; melatonin; placenta; pre-eclampsia  
  Abstract BACKGROUND: Research within the last decade has shown melatonin to have previously-unsuspected beneficial actions on the peripheral reproductive organs. Likewise, numerous investigations have documented that stable circadian rhythms are also helpful in maintaining reproductive health. The relationship of melatonin and circadian rhythmicity to maternal and fetal health is summarized in this review. METHODS: Databases were searched for the related published English literature up to 15 May 2013. The search terms used in various combinations included melatonin, circadian rhythms, biological clock, suprachiasmatic nucleus, ovary, pregnancy, uterus, placenta, fetus, pre-eclampsia, intrauterine growth restriction, ischemia-reperfusion, chronodisruption, antioxidants, oxidative stress and free radicals. The results of the studies uncovered are summarized herein. RESULTS: Both melatonin and circadian rhythms impact reproduction, especially during pregnancy. Melatonin is a multifaceted molecule with direct free radical scavenging and indirect antioxidant activities. Melatonin is produced in both the ovary and in the placenta where it protects against molecular mutilation and cellular dysfunction arising from oxidative/nitrosative stress. The placenta, in particular, is often a site of excessive free radical generation due to less than optimal adhesion to the uterine wall, which leads to either persistent hypoxia or intermittent hypoxia and reoxygenation, processes that cause massive free radical generation and organ dysfunction. This may contribute to pre-eclampsia and other disorders which often complicate pregnancy. Melatonin has ameliorated free radical damage to the placenta and to the fetus in experiments using non-human mammals. Likewise, the maintenance of a regular maternal light/dark and sleep/wake cycle is important to stabilize circadian rhythms generated by the maternal central circadian pacemaker, the suprachiasmatic nuclei. Optimal circadian rhythmicity in the mother is important since her circadian clock, either directly or indirectly via the melatonin rhythm, programs the developing master oscillator of the fetus. Experimental studies have shown that disturbed maternal circadian rhythms, referred to as chronodisruption, and perturbed melatonin cycles have negative consequences for the maturing fetal oscillators, which may lead to psychological and behavioral problems in the newborn. To optimize regular circadian rhythms and prevent disturbances of the melatonin cycle during pregnancy, shift work and bright light exposure at night should be avoided, especially during the last trimester of pregnancy. Finally, melatonin synergizes with oxytocin to promote delivery of the fetus. Since blood melatonin levels are normally highest during the dark period, the propensity of childbirth to occur at night may relate to the high levels of melatonin at this time which work in concert with oxytocin to enhance the strength of uterine contractions. CONCLUSIONS: A number of conclusions naturally evolve from the data summarized in this review: (i) melatonin, of both pineal and placental origin, has essential functions in fetal maturation and placenta/uterine homeostasis; (ii) circadian clock genes, which are components of all cells including those in the peripheral reproductive organs, have important roles in reproductive and organismal (fetal and maternal) physiology; (iii) due to the potent antioxidant actions of melatonin, coupled with its virtual absence of toxicity, this indoleamine may have utility in the treatment of pre-eclampsia, intrauterine growth restriction, placental and fetal ischemia/reperfusion, etc. (iv) the propensity for parturition to occur at night may relate to the synergism between the nocturnal increase in melatonin and oxytocin.  
  Address Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1355-4786 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24132226 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 504  
Permanent link to this record
 

 
Author Sherman, H.; Gutman, R.; Chapnik, N.; Meylan, J.; le Coutre, J.; Froy, O. url  doi
openurl 
  Title Caffeine alters circadian rhythms and expression of disease and metabolic markers Type Journal Article
  Year 2011 Publication The International Journal of Biochemistry & Cell Biology Abbreviated Journal (up) Int J Biochem Cell Biol  
  Volume 43 Issue 5 Pages 829-838  
  Keywords Human Health; Animals; Biological Markers/blood/metabolism; Body Weight/drug effects/physiology; Caffeine/*pharmacology; Caloric Restriction; Circadian Rhythm/*drug effects/genetics/physiology; *Disease/genetics; Eating/drug effects/physiology; Gene Expression Regulation/*drug effects/genetics; HEK293 Cells; Humans; Inflammation/metabolism; Male; Mice; Mice, Inbred C57BL; Motor Activity/drug effects/physiology  
  Abstract The circadian clock regulates many aspects of physiology, energy metabolism, and sleep. Restricted feeding (RF), a regimen that restricts the duration of food availability entrains the circadian clock. Caffeine has been shown to affect both metabolism and sleep. However, its effect on clock gene and clock-controlled gene expression has not been studied. Here, we tested the effect of caffeine on circadian rhythms and the expression of disease and metabolic markers in the serum, liver, and jejunum of mice supplemented with caffeine under ad libitum (AL) feeding or RF for 16 weeks. Caffeine significantly affected circadian oscillation and the daily levels of disease and metabolic markers. Under AL, caffeine reduced the average daily mRNA levels of certain disease and inflammatory markers, such as liver alpha fetoprotein (Afp), C-reactive protein (Crp), jejunum alanine aminotransferase (Alt), growth arrest and DNA damage 45beta (Gadd45beta), Interleukin 1alpha (Il-1alpha), Il-1beta mRNA and serum plasminogen activator inhibitor 1 (PAI-1). Under RF, caffeine reduced the average daily levels of Alt, Gadd45beta, Il-1alpha and Il-1beta mRNA in the jejunum, but not in the liver. In addition, caffeine supplementation led to decreased expression of catabolic factors under RF. In conclusion, caffeine affects circadian gene expression and metabolism possibly leading to beneficial effects mainly under AL feeding.  
  Address Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1357-2725 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21352949 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 810  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: