toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Raiewski, E.E.; Elliott, J.A.; Evans, J.A.; Glickman, G.L.; Gorman, M.R. url  doi
openurl 
  Title Twice daily melatonin peaks in Siberian but not Syrian hamsters under 24 h light:dark:light:dark cycles Type Journal Article
  Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 29 Issue 9 Pages 1206-1215  
  Keywords Animals; Circadian Rhythm/*physiology; Cricetinae; Male; Melatonin/blood/*secretion; Mesocricetus/blood/*physiology; Motor Activity/physiology; Phodopus/blood/*physiology; Photoperiod; Species Specificity  
  Abstract (up) The daily pattern of blood-borne melatonin varies seasonally under the control of a multi-oscillator circadian pacemaker. Here we examine patterns of melatonin secretion and locomotor activity in Siberian and Syrian hamsters entrained to bimodal LDLD8:4:8:4 and LD20:4 lighting schedules that facilitate novel temporal arrangements of component circadian oscillators. Under LDLD, both species robustly bifurcated wheel-running activity in distinct day scotophase (DS) and night scotophase (NS) bouts. Siberian hamsters displayed significant melatonin increases during each scotophase in LDLD, and in the single daily scotophase of LD20:4. The bimodal melatonin secretion pattern persisted in acutely extended 16 h scotophases. Syrian hamsters, in contrast, showed no significant increases in plasma melatonin during either scotophase of LDLD8:4:8:4 or in LD20:4. In this species, detectable levels were observed only when the DS of LDLD was acutely extended to yield 16 h of darkness. Established species differences in the phase lag of nocturnal melatonin secretion relative to activity onset may underlie the above contrast: In non-bifurcated entrainment to 24 h LD cycles, Siberian hamsters show increased melatonin secretion within approximately 2 h after activity onset, whereas in Syrian hamsters, detectable melatonin secretion phase lags activity onset and the L/D transition by at least 4 h. The present results provide new evidence indicating multi-oscillator regulation of the waveform of melatonin secretion, specifically, the circadian control of the onset, offset and duration of nocturnal secretion.  
  Address Department of Psychology, and Center for Chronobiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0109, USA. eraiewski@ucsd.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23003567 Approved no  
  Call Number IDA @ john @ Serial 85  
Permanent link to this record
 

 
Author LeGates, T.A.; Altimus, C.M.; Wang, H.; Lee, H.-K.; Yang, S.; Zhao, H.; Kirkwood, A.; Weber, E.T.; Hattar, S. url  doi
openurl 
  Title Aberrant light directly impairs mood and learning through melanopsin-expressing neurons Type Journal Article
  Year 2012 Publication Nature Abbreviated Journal Nature  
  Volume 491 Issue 7425 Pages 594-598  
  Keywords Affect/drug effects/physiology/*radiation effects; Animals; Antidepressive Agents/pharmacology; Body Temperature Regulation/physiology/radiation effects; Circadian Rhythm/physiology; Cognition/drug effects/physiology/radiation effects; Corticosterone/metabolism; Depression/etiology/physiopathology; Desipramine/pharmacology; Fluoxetine/pharmacology; Learning/drug effects/physiology/*radiation effects; *Light; Long-Term Potentiation/drug effects; Male; Memory/physiology/radiation effects; Mice; Photoperiod; Retinal Ganglion Cells/drug effects/*metabolism/*radiation effects; *Rod Opsins/analysis; Sleep/physiology; Wakefulness/physiology  
  Abstract (up) The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.  
  Address Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23151476; PMCID:PMC3549331 Approved no  
  Call Number IDA @ john @ Serial 238  
Permanent link to this record
 

 
Author Santhi, N.; Thorne, H.C.; van der Veen, D.R.; Johnsen, S.; Mills, S.L.; Hommes, V.; Schlangen, L.J.M.; Archer, S.N.; Dijk, D.-J. url  doi
openurl 
  Title The spectral composition of evening light and individual differences in the suppression of melatonin and delay of sleep in humans Type Journal Article
  Year 2012 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res  
  Volume 53 Issue 1 Pages 47-59  
  Keywords Human Health; Adult; *Circadian Clocks; Cross-Sectional Studies; Electroencephalography; Female; Humans; Male; Melatonin/*metabolism; Photic Stimulation; *Photoperiod; Rod Opsins/*metabolism; *Sleep; *Sleep Disorders, Circadian Rhythm/etiology/metabolism/physiopathology; Time Factors  
  Abstract (up) The effect of light on circadian rhythms and sleep is mediated by a multi-component photoreceptive system of rods, cones and melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The intensity and spectral sensitivity characteristics of this system are to be fully determined. Whether the intensity and spectral composition of light exposure at home in the evening is such that it delays circadian rhythms and sleep also remains to be established. We monitored light exposure at home during 6-8wk and assessed light effects on sleep and circadian rhythms in the laboratory. Twenty-two women and men (23.1+/-4.7yr) participated in a six-way, cross-over design using polychromatic light conditions relevant to the light exposure at home, but with reduced, intermediate or enhanced efficacy with respect to the photopic and melanopsin systems. The evening rise of melatonin, sleepiness and EEG-assessed sleep onset varied significantly (P<0.01) across the light conditions, and these effects appeared to be largely mediated by the melanopsin, rather than the photopic system. Moreover, there were individual differences in the sensitivity to the disruptive effect of light on melatonin, which were robust against experimental manipulations (intra-class correlation=0.44). The data show that light at home in the evening affects circadian physiology and imply that the spectral composition of artificial light can be modified to minimize this disruptive effect on sleep and circadian rhythms. These findings have implications for our understanding of the contribution of artificial light exposure to sleep and circadian rhythm disorders such as delayed sleep phase disorder.  
  Address Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK. n.santhi@surrey.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-3098 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22017511 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 802  
Permanent link to this record
 

 
Author Wright, K.P.J.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D. url  doi
openurl 
  Title Entrainment of the human circadian clock to the natural light-dark cycle Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 16 Pages 1554-1558  
  Keywords Human Health; Adult; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight; Young Adult; Circadian Rhythm  
  Abstract (up) The electric light is one of the most important human inventions. Sleep and other daily rhythms in physiology and behavior, however, evolved in the natural light-dark cycle [1], and electrical lighting is thought to have disrupted these rhythms. Yet how much the age of electrical lighting has altered the human circadian clock is unknown. Here we show that electrical lighting and the constructed environment is associated with reduced exposure to sunlight during the day, increased light exposure after sunset, and a delayed timing of the circadian clock as compared to a summer natural 14 hr 40 min:9 hr 20 min light-dark cycle camping. Furthermore, we find that after exposure to only natural light, the internal circadian clock synchronizes to solar time such that the beginning of the internal biological night occurs at sunset and the end of the internal biological night occurs before wake time just after sunrise. In addition, we find that later chronotypes show larger circadian advances when exposed to only natural light, making the timing of their internal clocks in relation to the light-dark cycle more similar to earlier chronotypes. These findings have important implications for understanding how modern light exposure patterns contribute to late sleep schedules and may disrupt sleep and circadian clocks.  
  Address Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309-0354, USA. kenneth.wright@colorado.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23910656; PMCID:PMC4020279 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 505  
Permanent link to this record
 

 
Author Lockley, S.W.; Brainard, G.C.; Czeisler, C.A. url  doi
openurl 
  Title High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light Type Journal Article
  Year 2003 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab  
  Volume 88 Issue 9 Pages 4502-4505  
  Keywords Human Health; Adult; Area Under Curve; Circadian Rhythm/*radiation effects; Female; Humans; *Light; Male; Melatonin/*metabolism; Pineal Gland/metabolism/radiation effects; Saliva/metabolism; Non-programmatic  
  Abstract (up) The endogenous circadian oscillator in mammals, situated in the suprachiasmatic nuclei, receives environmental photic input from specialized subsets of photoreceptive retinal ganglion cells. The human circadian pacemaker is exquisitely sensitive to ocular light exposure, even in some people who are otherwise totally blind. The magnitude of the resetting response to white light depends on the timing, intensity, duration, number and pattern of exposures. We report here that the circadian resetting response in humans, as measured by the pineal melatonin rhythm, is also wavelength dependent. Exposure to 6.5 h of monochromatic light at 460 nm induces a two-fold greater circadian phase delay than 6.5 h of 555 nm monochromatic light of equal photon density. Similarly, 460 nm monochromatic light causes twice the amount of melatonin suppression compared to 555 nm monochromatic light, and is dependent on the duration of exposure in addition to wavelength. These studies demonstrate that the peak of sensitivity of the human circadian pacemaker to light is blue-shifted relative to the three-cone visual photopic system, the sensitivity of which peaks at approximately 555 nm. Thus photopic lux, the standard unit of illuminance, is inappropriate when quantifying the photic drive required to reset the human circadian pacemaker.  
  Address Division of Sleep Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-972X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12970330 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 778  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: