toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fonken, L.K.; Kitsmiller, E.; Smale, L.; Nelson, R.J. url  doi
openurl 
  Title Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent Type Journal Article
  Year 2012 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 27 Issue 4 Pages 319-327  
  Keywords Analysis of Variance; Animals; CA1 Region, Hippocampal/cytology; CA3 Region, Hippocampal/cytology; Circadian Rhythm/*physiology; Cognition/*physiology/radiation effects; Corticosterone/blood; Dendrites/physiology/radiation effects; Dentate Gyrus/cytology; Depressive Disorder/*physiopathology; Food Preferences/physiology/radiation effects; Light; Male; Maze Learning/physiology/radiation effects; Motor Activity/physiology/radiation effects; Murinae/*physiology; Neurons/drug effects/physiology; *Photoperiod; Swimming/physiology  
  Abstract (up) Circadian disruption is a common by-product of modern life. Although jet lag and shift work are well-documented challenges to circadian organization, many more subtle environmental changes cause circadian disruption. For example, frequent fluctuations in the timing of the sleep/wake schedule, as well as exposure to nighttime lighting, likely affect the circadian system. Most studies of these effects have focused on nocturnal rodents, which are very different from diurnal species with respect to their patterns of light exposure and the effects that light can have on their activity. Thus, the authors investigated the effect of nighttime light on behavior and the brain of a diurnal rodent, the Nile grass rat. Following 3 weeks of exposure to standard light/dark (LD; 14:10 light [~150 lux] /dark [0 lux]) or dim light at night (dLAN; 14:10 light [~150 lux] /dim [5 lux]), rats underwent behavioral testing, and hippocampal neurons within CA1, CA3, and the dentate gyrus (DG) were examined. Three behavioral effects of dLAN were observed: (1) decreased preference for a sucrose solution, (2) increased latency to float in a forced swim test, and (3) impaired learning and memory in the Barnes maze. Light at night also reduced dendritic length in DG and basilar CA1 dendrites. Dendritic length in the DG positively correlated with sucrose consumption in the sucrose anhedonia task. Nighttime light exposure did not disrupt the pattern of circadian locomotor activity, and all grass rats maintained a diurnal activity pattern. Together, these data suggest that exposure to dLAN can alter affective responses and impair cognition in a diurnal animal.  
  Address Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22855576 Approved no  
  Call Number IDA @ john @ Serial 91  
Permanent link to this record
 

 
Author Foster, R.G.; Roenneberg, T. url  doi
openurl 
  Title Human responses to the geophysical daily, annual and lunar cycles Type Journal Article
  Year 2008 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 18 Issue 17 Pages R784-R794  
  Keywords Human Health; Biological Clocks; Birth Rate; Circadian Rhythm; Death; Female; Human Activities; Humans; Male; Moon; *Periodicity; Photoperiod; Seasons; Sexual Behavior; Sleep  
  Abstract (up) Collectively the daily, seasonal, lunar and tidal geophysical cycles regulate much of the temporal biology of life on Earth. The increasing isolation of human societies from these geophysical cycles, as a result of improved living conditions, high-quality nutrition and 24/7 working practices, have led many to believe that human biology functions independently of them. Yet recent studies have highlighted the dominant role that our circadian clock plays in the organisation of 24 hour patterns of behaviour and physiology. Preferred wake and sleep times are to a large extent driven by an endogenous temporal program that uses sunlight as an entraining cue. The alarm clock can drive human activity rhythms but has little direct effect on our endogenous 24 hour physiology. In many situations, our biology and our society appear to be in serious opposition, and the damaging consequences to our health under these circumstances are increasingly recognised. The seasons dominate the lives of non-equatorial species, and until recently, they also had a marked influence on much of human biology. Despite human isolation from seasonal changes in temperature, food and photoperiod in the industrialised nations, the seasons still appear to have a small, but significant, impact upon when individuals are born and many aspects of health. The seasonal changes that modulate our biology, and how these factors might interact with the social and metabolic status of the individual to drive seasonal effects, are still poorly understood. Lunar cycles had, and continue to have, an influence upon human culture, though despite a persistent belief that our mental health and other behaviours are modulated by the phase of the moon, there is no solid evidence that human biology is in any way regulated by the lunar cycle.  
  Address Circadian and Visual Neuroscience, Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 & 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 7BN, UK. russell.foster@eye.ox.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18786384 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 752  
Permanent link to this record
 

 
Author Chellappa, S.L.; Viola, A.U.; Schmidt, C.; Bachmann, V.; Gabel, V.; Maire, M.; Reichert, C.F.; Valomon, A.; Gotz, T.; Landolt, H.-P.; Cajochen, C. url  doi
openurl 
  Title Human melatonin and alerting response to blue-enriched light depend on a polymorphism in the clock gene PER3 Type Journal Article
  Year 2012 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab  
  Volume 97 Issue 3 Pages E433-7  
  Keywords Adult; Alleles; Cross-Over Studies; Female; Genotype; Homozygote; Humans; *Light; Male; Melatonin/*blood/genetics; *Minisatellite Repeats; Period Circadian Proteins/*genetics; *Polymorphism, Genetic; Questionnaires; Sleep/genetics; Wakefulness/*genetics  
  Abstract (up) CONTEXT: Light exposure, particularly at the short-wavelength range, triggers several nonvisual responses in humans. However, the extent to which the melatonin-suppressing and alerting effect of light differs among individuals remains unknown. OBJECTIVE: Here we investigated whether blue-enriched polychromatic light impacts differentially on melatonin and subjective and objective alertness in healthy participants genotyped for the PERIOD3 (PER3) variable-number, tandem-repeat polymorphism. DESIGN, SETTING, AND PARTICIPANTS: Eighteen healthy young men homozygous for the PER3 polymorphism (PER3(5/5)and PER3(4/4)) underwent a balanced crossover design during the winter season, with light exposure to compact fluorescent lamps of 40 lux at 6500 K and at 2500 K during 2 h in the evening. RESULTS: In comparison to light at 2500 K, blue-enriched light at 6500 K induced a significant suppression of the evening rise in endogenous melatonin levels in PER3(5/5) individuals but not in PER3(4/4). Likewise, PER3(5/5) individuals exhibited a more pronounced alerting response to light at 6500 K than PER3(4/4) volunteers. Waking electroencephalographic activity in the theta range (5-7 Hz), a putative correlate of sleepiness, was drastically attenuated during light exposure at 6500 K in PER3(5/5) individuals as compared with PER3(4/4). CONCLUSIONS: We provide first evidence that humans homozygous for the PER3 5/5 allele are particularly sensitive to blue-enriched light, as indexed by the suppression of endogenous melatonin and waking theta activity. Light sensitivity in humans may be modulated by a clock gene polymorphism implicated in the sleep-wake regulation.  
  Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Kleinstrasse 27, CH-4012 Basel, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-972X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22188742 Approved no  
  Call Number IDA @ john @ Serial 301  
Permanent link to this record
 

 
Author Gooley, J.J.; Chamberlain, K.; Smith, K.A.; Khalsa, S.B.S.; Rajaratnam, S.M.W.; Van Reen, E.; Zeitzer, J.M.; Czeisler, C.A.; Lockley, S.W. url  doi
openurl 
  Title Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans Type Journal Article
  Year 2011 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab  
  Volume 96 Issue 3 Pages E463-72  
  Keywords Adolescent; Adult; Female; Humans; *Light; *Lighting; Male; Melatonin/*blood; Sleep/physiology; Time Factors; Young Adult  
  Abstract (up) CONTEXT: Millions of individuals habitually expose themselves to room light in the hours before bedtime, yet the effects of this behavior on melatonin signaling are not well recognized. OBJECTIVE: We tested the hypothesis that exposure to room light in the late evening suppresses the onset of melatonin synthesis and shortens the duration of melatonin production. DESIGN: In a retrospective analysis, we compared daily melatonin profiles in individuals living in room light (<200 lux) vs. dim light (<3 lux). PATIENTS: Healthy volunteers (n = 116, 18-30 yr) were recruited from the general population to participate in one of two studies. SETTING: Participants lived in a General Clinical Research Center for at least five consecutive days. INTERVENTION: Individuals were exposed to room light or dim light in the 8 h preceding bedtime. OUTCOME MEASURES: Melatonin duration, onset and offset, suppression, and phase angle of entrainment were determined. RESULTS: Compared with dim light, exposure to room light before bedtime suppressed melatonin, resulting in a later melatonin onset in 99.0% of individuals and shortening melatonin duration by about 90 min. Also, exposure to room light during the usual hours of sleep suppressed melatonin by greater than 50% in most (85%) trials. CONCLUSIONS: These findings indicate that room light exerts a profound suppressive effect on melatonin levels and shortens the body's internal representation of night duration. Hence, chronically exposing oneself to electrical lighting in the late evening disrupts melatonin signaling and could therefore potentially impact sleep, thermoregulation, blood pressure, and glucose homeostasis.  
  Address Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA. gmsjjg@nus.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-972X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21193540; PMCID:PMC3047226 Approved no  
  Call Number IDA @ john @ Serial 139  
Permanent link to this record
 

 
Author Obayashi, K.; Saeki, K.; Iwamoto, J.; Okamoto, N.; Tomioka, K.; Nezu, S.; Ikada, Y.; Kurumatani, N. url  doi
openurl 
  Title Exposure to light at night, nocturnal urinary melatonin excretion, and obesity/dyslipidemia in the elderly: a cross-sectional analysis of the HEIJO-KYO study Type Journal Article
  Year 2013 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab  
  Volume 98 Issue 1 Pages 337-344  
  Keywords *Aged; Aged, 80 and over; Case-Control Studies; *Circadian Rhythm/physiology; Cross-Sectional Studies; Dyslipidemias/complications/metabolism/*urine; Female; Humans; Japan; *Light; Male; Melatonin/secretion/*urine; Obesity/complications/metabolism/*urine; Photoperiod  
  Abstract (up) CONTEXT: Obesity and exposure to light at night (LAN) have increased globally. Although LAN suppresses melatonin secretion and disturbs body mass regulation in experimental settings, its associations with melatonin secretion, obesity, and other metabolic consequences in uncontrolled home settings remain unclear. OBJECTIVE: The aim of this study was to determine the association of exposure to LAN in an uncontrolled home setting with melatonin secretion, obesity, dyslipidemia, and diabetes. DESIGN AND PARTICIPANTS: A cross-sectional study was performed in 528 elderly individuals (mean age, 72.8 yr). MEASURES: The intensity of LAN in the bedroom was measured at 1-min intervals during two consecutive nights, along with overnight urinary melatonin excretion and metabolic parameters. RESULTS: Compared with the Dim group (average <3 lux; n = 383), the LAN group (average >/=3 lux; n = 145) showed significantly higher body weight (adjusted mean, 58.8 vs. 56.6 kg; P = 0.01), body mass index (23.3 vs. 22.7 kg/m(2); P = 0.04), waist circumference (84.9 vs. 82.8 cm; P = 0.01), triglyceride levels (119.7 vs. 99.5 mg/dl; P < 0.01), and low-density lipoprotein cholesterol levels (128.6 vs. 122.2 mg/dl; P = 0.04), and showed significantly lower high-density lipoprotein cholesterol levels (57.4 vs. 61.3 mg/dl; P = 0.02). These associations were independent of numerous potential confounders, including urinary melatonin excretion. Furthermore, LAN exposure is associated with higher odds ratios (ORs) for obesity (body mass index: OR, 1.89; P = 0.02; abdominal: OR, 1.62; P = 0.04) and dyslipidemia (OR, 1.72; P = 0.02) independent of demographic and socioeconomic parameters. In contrast, urinary melatonin excretion and glucose parameters did not show significant differences between the two groups. CONCLUSIONS: Exposure to LAN in an uncontrolled home setting is associated with impaired obese and lipid parameters independent of nocturnal urinary melatonin excretion in elderly individuals. Moreover, LAN exposure is associated with higher ORs for obesity and dyslipidemia independent of demographic and socioeconomic parameters.  
  Address Department of Community Health and Epidemiology, Nara Medical University School of Medicine, 840 Shijocho, Kashiharashi, Nara, 634-8521, Japan. obayashi@naramed-u.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-972X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23118419 Approved no  
  Call Number IDA @ john @ Serial 168  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: