|   | 
Details
   web
Records
Author Kloog, I.; Haim, A.; Stevens, R.G.; Barchana, M.; Portnov, B.A.
Title Light at night co-distributes with incident breast but not lung cancer in the female population of Israel Type Journal Article
Year 2008 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 25 Issue 1 Pages 65-81
Keywords Human Health; Breast Neoplasms/*epidemiology/etiology; Female; Humans; Israel/epidemiology; *Light; Lung Neoplasms/epidemiology; Multivariate Analysis; Risk Factors
Abstract Recent studies of shift-working women have reported that excessive exposure to light at night (LAN) may be a risk factor for breast cancer. However, no studies have yet attempted to examine the co-distribution of LAN and breast cancer incidence on a population level with the goal to assess the coherence of these earlier findings with population trends. Coherence is one of Hill's “criteria” (actually, viewpoints) for an inference of causality. Nighttime satellite images were used to estimate LAN levels in 147 communities in Israel. Multiple regression analysis was performed to investigate the association between LAN and breast cancer incidence rates and, as a test of the specificity of our method, lung cancer incidence rates in women across localities under the prediction of a link with breast cancer but not lung cancer. After adjusting for several variables available on a population level, such as ethnic makeup, birth rate, population density, and local income level, a strong positive association between LAN intensity and breast cancer rate was revealed (p<0.05), and this association strengthened (p<0.01) when only statistically significant factors were filtered out by stepwise regression analysis. Concurrently, no association was found between LAN intensity and lung cancer rate. These results provide coherence of the previously reported case-control and cohort studies with the co-distribution of LAN and breast cancer on a population basis. The analysis yielded an estimated 73% higher breast cancer incidence in the highest LAN exposed communities compared to the lowest LAN exposed communities.
Address (up) Department of Natural Resources & Environmental Management, University of Haifa, Haifa, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:18293150 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 528
Permanent link to this record
 

 
Author Kloog, I.; Portnov, B.A.; Rennert, H.S.; Haim, A.
Title Does the modern urbanized sleeping habitat pose a breast cancer risk? Type Journal Article
Year 2011 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 28 Issue 1 Pages 76-80
Keywords Human Health; ged; Alcohol Drinking/adverse effects; Breast Neoplasms/*etiology; Case-Control Studies; Circadian Rhythm/*radiation effects; Female; Humans; Light/*adverse effects; Middle Aged; Odds Ratio; Risk Factors; *Sleep; Urbanization
Abstract Due to its disruptive effects on circadian rhythms and sleep deprivation at night, shiftworking is currently recognized as a risk factor for breast cancer (BC). As revealed by the present analysis based on a comparative case-control study of 1679 women, exposure to light-at-night (LAN) in the “sleeping habitat” is significantly associated with BC risk (odds ratio [OR] = 1.220, 95% confidence interval [CI] = 1.118-1.311; p < .001), controlling for education, ethnicity, fertility, and alcohol consumption. The novelty of the present research is that, to the best of the authors' knowledge, it is the first study to have identified an unequivocal positive association between bedroom-light intensity and BC risk. Thus, according to the results of the present study, not only should artificial light exposure in the working environment be considered as a potential risk factor for BC, but also LAN in the “sleeping habitat.”
Address (up) Department of Natural Resources and Environmental Management, Graduate School of Management, University of Haifa, Haifa, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:21182407 Approved no
Call Number LoNNe @ kagoburian @ Serial 770
Permanent link to this record
 

 
Author Brainard, G.C.; Sliney, D.; Hanifin, J.P.; Glickman, G.; Byrne, B.; Greeson, J.M.; Jasser, S.; Gerner, E.; Rollag, M.D.
Title Sensitivity of the human circadian system to short-wavelength (420-nm) light Type Journal Article
Year 2008 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 23 Issue 5 Pages 379-386
Keywords Human Health; Adult; Circadian Rhythm/*radiation effects; Female; Humans; *Light; Male; Melatonin/metabolism; Models, Biological; Neurosecretory Systems; Photons; Pineal Gland/metabolism; Retinal Ganglion Cells/*metabolism; Vision, Ocular
Abstract The circadian and neurobehavioral effects of light are primarily mediated by a retinal ganglion cell photoreceptor in the mammalian eye containing the photopigment melanopsin. Nine action spectrum studies using rodents, monkeys, and humans for these responses indicate peak sensitivities in the blue region of the visible spectrum ranging from 459 to 484 nm, with some disagreement in short-wavelength sensitivity of the spectrum. The aim of this work was to quantify the sensitivity of human volunteers to monochromatic 420-nm light for plasma melatonin suppression. Adult female (n=14) and male (n=12) subjects participated in 2 studies, each employing a within-subjects design. In a fluence-response study, subjects (n=8) were tested with 8 light irradiances at 420 nm ranging over a 4-log unit photon density range of 10(10) to 10(14) photons/cm(2)/sec and 1 dark exposure control night. In the other study, subjects (n=18) completed an experiment comparing melatonin suppression with equal photon doses (1.21 x 10(13) photons/cm(2)/sec) of 420 nm and 460 nm monochromatic light and a dark exposure control night. The first study demonstrated a clear fluence-response relationship between 420-nm light and melatonin suppression (p<0.001) with a half-saturation constant of 2.74 x 10(11) photons/cm(2)/sec. The second study showed that 460-nm light is significantly stronger than 420-nm light for suppressing melatonin (p<0.04). Together, the results clarify the visible short-wavelength sensitivity of the human melatonin suppression action spectrum. This basic physiological finding may be useful for optimizing lighting for therapeutic and other applications.
Address (up) Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA. george.brainard@jefferson.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:18838601 Approved no
Call Number LoNNe @ kagoburian @ Serial 724
Permanent link to this record
 

 
Author Fonken, L.K.; Weil, Z.M.; Nelson, R.J.
Title Dark nights reverse metabolic disruption caused by dim light at night Type Journal Article
Year 2013 Publication Obesity (Silver Spring, Md.) Abbreviated Journal Obesity (Silver Spring)
Volume 21 Issue 6 Pages 1159-1164
Keywords Animals; Body Mass Index; Energy Intake; Gene Expression; Glucose Tolerance Test; *Light; Male; Mice; Obesity/*epidemiology/etiology; *Photoperiod; Weight Gain
Abstract OBJECTIVE: The increasing prevalence of obesity and related metabolic disorders coincides with increasing exposure to light at night. Previous studies report that mice exposed to dim light at night (dLAN) develop symptoms of metabolic syndrome. This study investigated whether mice returned to dark nights after dLAN exposure recover metabolic function. DESIGN AND METHODS: Male Swiss-Webster mice were assigned to either: standard light-dark (LD) conditions for 8 weeks (LD/LD), dLAN for 8 weeks (dLAN/dLAN), LD for 4 weeks followed by 4 weeks of dLAN (LD/dLAN), and dLAN for 4 weeks followed by 4 weeks of LD (dLAN/LD). RESULTS: After 4 weeks in their respective lighting conditions both groups initially placed in dLAN increased body mass gain compared to LD mice. Half of the dLAN mice (dLAN/LD) were then transferred to LD and vice versa (LD/dLAN). Following the transfer dLAN/dLAN and LD/dLAN mice gained more weight than LD/LD and dLAN/LD mice. At the conclusion of the study dLAN/LD mice did not differ from LD/LD mice with respect to weight gain and had lower fat pad mass compared to dLAN/dLAN mice. Compared to all other groups dLAN/dLAN mice decreased glucose tolerance as indicated by an intraperitoneal glucose tolerance test at week 7, indicating that dLAN/LD mice recovered glucose metabolism. dLAN/dLAN mice also increased MAC1 mRNA expression in peripheral fat as compared to both LD/LD and dLAN/LD mice, suggesting peripheral inflammation is induced by dLAN, but not sustained after return to LD. CONCLUSION: These results suggest that re-exposure to dark nights ameliorates metabolic disruption caused by dLAN exposure.
Address (up) Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, Ohio State University, Columbus, Ohio 43210, USA. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1930-7381 ISBN Medium
Area Expedition Conference
Notes PMID:23666854 Approved no
Call Number IDA @ john @ Serial 167
Permanent link to this record
 

 
Author Fonken, L.K.; Aubrecht, T.G.; Melendez-Fernandez, O.H.; Weil, Z.M.; Nelson, R.J.
Title Dim light at night disrupts molecular circadian rhythms and increases body weight Type Journal Article
Year 2013 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 28 Issue 4 Pages 262-271
Keywords Animals; Blood Glucose/metabolism; Body Weight/*physiology; CLOCK Proteins/biosynthesis/genetics; Circadian Rhythm/*physiology; Corticosterone/metabolism; Feeding Behavior/physiology; Immunohistochemistry; Light; *Lighting; Male; Mice; Motor Activity; Polymerase Chain Reaction; Suprachiasmatic Nucleus/metabolism/physiology; clock genes; feeding rhythm; light pollution; obesity
Abstract With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.
Address (up) Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:23929553; PMCID:PMC4033305 Approved no
Call Number IDA @ john @ Serial 28
Permanent link to this record