|   | 
Details
   web
Records
Author Srinivasan, V.; Spence, D.W.; Pandi-Perumal, S.R.; Trakht, I.; Esquifino, A.I.; Cardinali, D.P.; Maestroni, G.J.
Title Melatonin, environmental light, and breast cancer Type Journal Article
Year 2008 Publication Breast Cancer Research and Treatment Abbreviated Journal Breast Cancer Res Treat
Volume 108 Issue 3 Pages 339-350
Keywords Human Health; Breast Neoplasms/*etiology/*physiopathology; Circadian Rhythm/physiology; Female; Humans; Light; Lighting/*adverse effects; Melatonin/*physiology; Occupational Exposure/adverse effects
Abstract Although many factors have been suggested as causes for breast cancer, the increased incidence of the disease seen in women working in night shifts led to the hypothesis that the suppression of melatonin by light or melatonin deficiency plays a major role in cancer development. Studies on the 7,12-dimethylbenz[a]anthracene and N-methyl-N-nitrosourea experimental models of human breast cancer indicate that melatonin is effective in reducing cancer development. In vitro studies in MCF-7 human breast cancer cell line have shown that melatonin exerts its anticarcinogenic actions through a variety of mechanisms, and that it is most effective in estrogen receptor (ER) alpha-positive breast cancer cells. Melatonin suppresses ER gene, modulates several estrogen dependent regulatory proteins and pro-oncogenes, inhibits cell proliferation, and impairs the metastatic capacity of MCF-7 human breast cancer cells. The anticarcinogenic action on MCF-7 cells has been demonstrated at the physiological concentrations of melatonin attained at night, suggesting thereby that melatonin acts like an endogenous antiestrogen. Melatonin also decreases the formation of estrogens from androgens via aromatase inhibition. Circulating melatonin levels are abnormally low in ER-positive breast cancer patients thereby supporting the melatonin hypothesis for breast cancer in shift working women. It has been postulated that enhanced endogenous melatonin secretion is responsible for the beneficial effects of meditation as a form of psychosocial intervention that helps breast cancer patients.
Address Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0167-6806 ISBN Medium
Area Expedition Conference
Notes PMID:17541739 Approved no
Call Number LoNNe @ kagoburian @ Serial 815
Permanent link to this record
 

 
Author Bedrosian, T.A.; Vaughn, C.A.; Galan, A.; Daye, G.; Weil, Z.M.; Nelson, R.J.
Title Nocturnal light exposure impairs affective responses in a wavelength-dependent manner Type Journal Article
Year 2013 Publication The Journal of Neuroscience : the Official Journal of the Society for Neuroscience Abbreviated Journal J Neurosci
Volume 33 Issue 32 Pages 13081-13087
Keywords Analysis of Variance; Animals; Circadian Rhythm/*physiology; Cricetinae; Dose-Response Relationship, Radiation; Female; Food Deprivation/physiology; Food Preferences/physiology/radiation effects; Fourier Analysis; Gene Expression Regulation/radiation effects; Hippocampus/pathology/radiation effects; Immobility Response, Tonic/radiation effects; Light/*adverse effects; Mood Disorders/*etiology/pathology; Motor Activity/physiology/radiation effects; Phodopus; Proto-Oncogene Proteins c-fos/metabolism; Social Behavior; Suprachiasmatic Nucleus/metabolism; Time Factors
Abstract Life on earth is entrained to a 24 h solar cycle that synchronizes circadian rhythms in physiology and behavior; light is the most potent entraining cue. In mammals, light is detected by (1) rods and cones, which mediate visual function, and (2) intrinsically photosensitive retinal ganglion cells (ipRGCs), which primarily project to the suprachiasmatic nucleus (SCN) in the hypothalamus to regulate circadian rhythms. Recent evidence, however, demonstrates that ipRGCs also project to limbic brain regions, suggesting that, through this pathway, light may have a role in cognition and mood. Therefore, it follows that unnatural exposure to light may have negative consequences for mood or behavior. Modern environmental lighting conditions have led to excessive exposure to light at night (LAN), and particularly to blue wavelength lights. We hypothesized that nocturnal light exposure (i.e., dim LAN) would induce depressive responses and alter neuronal structure in hamsters (Phodopus sungorus). If this effect is mediated by ipRGCs, which have reduced sensitivity to red wavelength light, then we predicted that red LAN would have limited effects on brain and behavior compared with shorter wavelengths. Additionally, red LAN would not induce c-Fos activation in the SCN. Our results demonstrate that exposure to LAN influences behavior and neuronal plasticity and that this effect is likely mediated by ipRGCs. Modern sources of LAN that contain blue wavelengths may be particularly disruptive to the circadian system, potentially contributing to altered mood regulation.
Address Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA. Bedrosian.2@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0270-6474 ISBN Medium
Area Expedition Conference
Notes PMID:23926261 Approved no
Call Number IDA @ john @ Serial 27
Permanent link to this record
 

 
Author Stevens, R.G.
Title Light-at-night, circadian disruption and breast cancer: assessment of existing evidence Type Journal Article
Year 2009 Publication International Journal of Epidemiology Abbreviated Journal Int J Epidemiol
Volume 38 Issue 4 Pages 963-970
Keywords Human Health; Animals; Blindness/complications/epidemiology; Breast Neoplasms/epidemiology/*etiology/metabolism; Chronobiology Disorders/*complications/epidemiology/metabolism; Circadian Rhythm/physiology; Disease Models, Animal; Female; Humans; Light Signal Transduction/physiology; Lighting/adverse effects; Melatonin/biosynthesis; Sleep/physiology; Time Factors; *Work Schedule Tolerance
Abstract BACKGROUND: Breast cancer incidence is increasing globally for largely unknown reasons. The possibility that a portion of the breast cancer burden might be explained by the introduction and increasing use of electricity to light the night was suggested >20 years ago. METHODS: The theory is based on nocturnal light-induced disruption of circadian rhythms, notably reduction of melatonin synthesis. It has formed the basis for a series of predictions including that non-day shift work would increase risk, blind women would be at lower risk, long sleep duration would lower risk and community nighttime light level would co-distribute with breast cancer incidence on the population level. RESULTS: Accumulation of epidemiological evidence has accelerated in recent years, reflected in an International Agency for Research on Cancer (IARC) classification of shift work as a probable human carcinogen (2A). There is also a strong rodent model in support of the light-at-night (LAN) idea. CONCLUSION: If a consensus eventually emerges that LAN does increase risk, then the mechanisms for the effect are important to elucidate for intervention and mitigation. The basic understanding of phototransduction for the circadian system, and of the molecular genetics of circadian rhythm generation are both advancing rapidly, and will provide for the development of lighting technologies at home and at work that minimize circadian disruption, while maintaining visual efficiency and aesthetics. In the interim, there are strategies now available to reduce the potential for circadian disruption, which include extending the daily dark period, appreciate nocturnal awakening in the dark, using dim red light for nighttime necessities, and unless recommended by a physician, not taking melatonin tablets.
Address Department of Community Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-6325, USA. bugs@uchc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0300-5771 ISBN Medium
Area Expedition Conference
Notes PMID:19380369; PMCID:PMC2734067 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 527
Permanent link to this record
 

 
Author Evans, J.A.; Carter, S.N.; Freeman, D.A.; Gorman, M.R.
Title Dim nighttime illumination alters photoperiodic responses of hamsters through the intergeniculate leaflet and other photic pathways Type Journal Article
Year 2012 Publication Neuroscience Abbreviated Journal Neuroscience
Volume 202 Issue Pages 300-308
Keywords Animals; Biological Clocks/physiology; Circadian Rhythm/physiology; Cricetinae; Darkness; Data Interpretation, Statistical; Geniculate Bodies/*physiology; *Lighting; Male; Motor Activity/physiology; Phodopus; *Photoperiod; Visual Pathways/*physiology
Abstract In mammals, light entrains the central pacemaker within the suprachiasmatic nucleus (SCN) through both a direct neuronal projection from the retina and an indirect projection from the intergeniculate leaflet (IGL) of the thalamus. Although light comparable in intensity to moonlight is minimally effective at resetting the phase of the circadian clock, dimly lit and completely dark nights are nevertheless perceived differentially by the circadian system, even when nighttime illumination is below putative thresholds for phase resetting. Under a variety of experimental paradigms, dim nighttime illumination exerts effects that may be characterized as enhancing the plasticity of circadian entrainment. For example, relative to completely dark nights, dimly lit nights accelerate development of photoperiodic responses of Siberian hamsters transferred from summer to winter day lengths. Here we assess the neural pathways underlying this response by testing whether IGL lesions eliminate the effects of dim nighttime illumination under short day lengths. Consistent with previous work, dimly lit nights facilitated the expansion of activity duration under short day lengths. Ablation of the IGL, moreover, did not influence photoperiodic responses in animals held under completely dark nights. However, among animals that were provided dimly lit nights, IGL lesions prevented the short-day typical expansion of activity duration as well as the seasonally appropriate gonadal regression and reduction in body weight. Thus, the present data indicate that the IGL plays a central role in mediating the facilitative effects of dim nighttime illumination under short day lengths, but in the absence of the IGL, dim light at night influences photoperiodic responses through residual photic pathways.
Address Department of Psychology, University of California, San Diego, La Jolla, CA, USA. jevans@msm.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0306-4522 ISBN Medium
Area Expedition Conference
Notes PMID:22155265; PMCID:PMC3578228 Approved no
Call Number IDA @ john @ Serial 87
Permanent link to this record
 

 
Author Thorn, L.; Hucklebridge, F.; Esgate, A.; Evans, P.; Clow, A.
Title The effect of dawn simulation on the cortisol response to awakening in healthy participants Type Journal Article
Year 2004 Publication Psychoneuroendocrinology Abbreviated Journal Psychoneuroendocrinology
Volume 29 Issue 7 Pages 925-930
Keywords Human Health; Adult; Affect/*physiology/radiation effects; Arousal/*physiology/radiation effects; Circadian Rhythm/*physiology; Female; Humans; Hydrocortisone/analysis/*physiology/radiation effects; *Light; Male; Middle Aged; Reference Values; Saliva/chemistry; Wakefulness/*physiology/radiation effects
Abstract Bright light exposure after awakening has been shown to elevate cortisol levels in healthy participants. The present study examined the effect of dawn simulation (a treatment for seasonal affective disorder) on the cortisol response to awakening and mood. Twelve healthy participants were supplied with a dawn simulator (The Natural Alarm Clock, Outside In, Cambridge Ltd), a bedside light that increases in intensity prior to awakening to approximately 250 lux over 30 mins when an audible alarm sounds. A counterbalanced study was performed on 4 consecutive normal weekdays, two of which were control days (no dawn simulation) and two experimental (dawn simulation). Saliva samples were taken immediately on awakening then at 15, 30 and 45 minutes post awakening on all 4 study-days. Total cortisol production during the first 45 mins after awakening was found to be significantly higher in the experimental condition than in the control condition. Participants also reported greater arousal in the experimental condition and there was a trend for an association between increased arousal and increased cortisol secretory activity under dawn simulation. This study provides supportive evidence for the role of light and the suprachiasmatic nucleus in the awakening cortisol response.
Address Department of Psychology, University of Westminster, 309 Regent Street, London W1R 8AL, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0306-4530 ISBN Medium
Area Expedition Conference
Notes PMID:15177708 Approved no
Call Number LoNNe @ kagoburian @ Serial 824
Permanent link to this record