|   | 
Details
   web
Records
Author Fritschi, L.; Erren, T.C.; Glass, D.C.; Girschik, J.; Thomson, A.K.; Saunders, C.; Boyle, T.; El-Zaemey, S.; Rogers, P.; Peters, S.; Slevin, T.; D'Orsogna, A.; de Vocht, F.; Vermeulen, R.; Heyworth, J.S.
Title The association between different night shiftwork factors and breast cancer: a case-control study Type Journal Article
Year 2013 Publication British Journal of Cancer Abbreviated Journal Br J Cancer
Volume 109 Issue 9 Pages 2472-2480
Keywords Adult; Aged; Aged, 80 and over; Breast Neoplasms/*epidemiology/etiology; Case-Control Studies; Female; Humans; Life Style; Middle Aged; Questionnaires; Risk; Risk Factors; Western Australia/epidemiology; *Work Schedule Tolerance; Young Adult; oncogenesis
Abstract BACKGROUND: Research on the possible association between shiftwork and breast cancer is complicated because there are many different shiftwork factors, which might be involved including: light at night, phase shift, sleep disruption and changes in lifestyle factors while on shiftwork (diet, physical activity, alcohol intake and low sun exposure). METHODS: We conducted a population-based case-control study in Western Australia from 2009 to 2011 with 1205 incident breast cancer cases and 1789 frequency age-matched controls. A self-administered questionnaire was used to collect demographic, reproductive, and lifestyle factors and lifetime occupational history and a telephone interview was used to obtain further details about the shiftwork factors listed above. RESULTS: A small increase in risk was suggested for those ever doing the graveyard shift (work between midnight and 0500 hours) and breast cancer (odds ratio (OR)=1.16, 95% confidence interval (CI)=0.97-1.39). For phase shift, we found a 22% increase in breast cancer risk (OR=1.22, 95% CI=1.01-1.47) with a statistically significant dose-response relationship (P=0.04). For the other shiftwork factors, risks were marginally elevated and not statistically significant. CONCLUSION: We found some evidence that some of the factors involved in shiftwork may be associated with breast cancer but the ORs were low and there were inconsistencies in duration and dose-response relationships.
Address Western Australian Institute for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0007-0920 ISBN Medium
Area Expedition Conference
Notes PMID:24022188; PMCID:PMC3817316 Approved no
Call Number IDA @ john @ Serial 153
Permanent link to this record
 

 
Author Schmoll, C.; Khan, A.; Aspinall, P.; Goudie, C.; Koay, P.; Tendo, C.; Cameron, J.; Roe, J.; Deary, I.; Dhillon, B.
Title New light for old eyes: comparing melanopsin-mediated non-visual benefits of blue-light and UV-blocking intraocular lenses Type
Year 2014 Publication The British Journal of Ophthalmology Abbreviated Journal Br J Ophthalmol
Volume 98 Issue 1 Pages 124-128
Keywords Aged; Cataract/*physiopathology; Circadian Rhythm/physiology; Cognition/*physiology; Female; Humans; Lens Implantation, Intraocular; *Lenses, Intraocular; Light; Male; Phacoemulsification; Prospective Studies; Questionnaires; Reaction Time/physiology; Regression Analysis; Rod Opsins/*physiology; Sleep/*physiology; Physiology; Retina; blue blocker; blue light
Abstract BACKGROUND/AIMS: Melanopsin-expressing photosensitive retinal ganglion cells form a blue-light-sensitive non-visual system mediating diverse physiological effects including circadian entrainment and cognitive alertness. Reduced blue wavelength retinal illumination through cataract formation is thought to blunt these responses while cataract surgery and intraocular lens (IOL) implantation have been shown to have beneficial effects on sleep and cognition. We aimed to use the reaction time (RT) task and the Epworth Sleepiness Score (ESS) as a validated objective platform to compare non-visual benefits of UV- and blue-blocking IOLs. METHODS: Patients were prospectively randomised to receive either a UV- or blue-blocking IOL, performing an RT test and ESS questionnaire before and after surgery. Optical blurring at the second test controlled for visual improvement. Non-operative age-matched controls were recruited for comparison. RESULTS: 80 participants completed the study. Those undergoing first-eye phacoemulsification demonstrated significant improvements in RT over control (p=0.001) and second-eye surgery patients (p=0.03). Moreover, reduced daytime sleepiness was measured by ESS for the first-eye surgery group (p=0.008) but not for the second-eye group (p=0.09). Choice of UV- or blue-blocking IOL made no significant difference to magnitude of cognitive improvement (p=0.272). CONCLUSIONS: Phacoemulsification, particularly first-eye surgery, has a strong positive effect on cognition and daytime alertness, regardless of IOL type.
Address Princess Alexandra Eye Hospital, , Edinburgh, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0007-1161 ISBN Medium
Area Expedition Conference
Notes PMID:24158845 Approved no
Call Number IDA @ john @ Serial 342
Permanent link to this record
 

 
Author Blask, D.E.; Brainard, G.C.; Dauchy, R.T.; Hanifin, J.P.; Davidson, L.K.; Krause, J.A.; Sauer, L.A.; Rivera-Bermudez, M.A.; Dubocovich, M.L.; Jasser, S.A.; Lynch, D.T.; Rollag, M.D.; Zalatan, F.
Title Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats Type Journal Article
Year 2005 Publication Cancer Research Abbreviated Journal Cancer Res
Volume 65 Issue 23 Pages 11174-11184
Keywords Human Health; Animals; Breast Neoplasms/*blood/genetics/pathology; Cell Growth Processes/physiology; Circadian Rhythm/*physiology; Female; Humans; Light; Liver Neoplasms, Experimental/metabolism; Male; Melatonin/blood/*deficiency; Premenopause/blood; RNA, Messenger/biosynthesis/genetics; Rats; Rats, Nude; Receptors, Melatonin/biosynthesis/genetics; Transplantation, Heterologous
Abstract The increased breast cancer risk in female night shift workers has been postulated to result from the suppression of pineal melatonin production by exposure to light at night. Exposure of rats bearing rat hepatomas or human breast cancer xenografts to increasing intensities of white fluorescent light during each 12-hour dark phase (0-345 microW/cm2) resulted in a dose-dependent suppression of nocturnal melatonin blood levels and a stimulation of tumor growth and linoleic acid uptake/metabolism to the mitogenic molecule 13-hydroxyoctadecadienoic acid. Venous blood samples were collected from healthy, premenopausal female volunteers during either the daytime, nighttime, or nighttime following 90 minutes of ocular bright, white fluorescent light exposure at 580 microW/cm2 (i.e., 2,800 lx). Compared with tumors perfused with daytime-collected melatonin-deficient blood, human breast cancer xenografts and rat hepatomas perfused in situ, with nocturnal, physiologically melatonin-rich blood collected during the night, exhibited markedly suppressed proliferative activity and linoleic acid uptake/metabolism. Tumors perfused with melatonin-deficient blood collected following ocular exposure to light at night exhibited the daytime pattern of high tumor proliferative activity. These results are the first to show that the tumor growth response to exposure to light during darkness is intensity dependent and that the human nocturnal, circadian melatonin signal not only inhibits human breast cancer growth but that this effect is extinguished by short-term ocular exposure to bright, white light at night. These mechanistic studies are the first to provide a rational biological explanation for the increased breast cancer risk in female night shift workers.
Address Laboratory of Chrono-Neuroendocrine Oncology, Bassett Research Institute, The Mary Imogene Bassett Hospital, Cooperstown, New York 13326, USA. david.blask@bassett.org
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0008-5472 ISBN Medium
Area Expedition Conference
Notes PMID:16322268 Approved no
Call Number LoNNe @ kagoburian @ Serial 721
Permanent link to this record
 

 
Author Fonken, L.K.; Lieberman, R.A.; Weil, Z.M.; Nelson, R.J.
Title Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice Type Journal Article
Year 2013 Publication Endocrinology Abbreviated Journal Endocrinology
Volume 154 Issue 10 Pages 3817-3825
Keywords Adipose Tissue, White/*immunology/metabolism/pathology; Animals; Antigens, CD11b/biosynthesis/genetics/metabolism; Appetite Regulation/*radiation effects; Arcuate Nucleus/*immunology/metabolism/pathology; Behavior, Animal/radiation effects; Circadian Rhythm; Cytokines/biosynthesis/genetics/metabolism; Diet, High-Fat/*adverse effects; Feeding Behavior/radiation effects; Gene Expression Regulation; Glucose Intolerance/etiology/immunology/metabolism/pathology; I-kappa B Kinase/biosynthesis/genetics/metabolism; Insulin Resistance; Lighting/*adverse effects; Male; Mice; Microglia/immunology/metabolism/pathology; Nerve Tissue Proteins/biosynthesis/genetics/metabolism; Obesity/*etiology/immunology/metabolism/pathology; Random Allocation; *Weight Gain
Abstract Elevated nighttime light exposure is associated with symptoms of metabolic syndrome. In industrialized societies, high-fat diet (HFD) and exposure to light at night (LAN) often cooccur and may contribute to the increasing obesity epidemic. Thus, we hypothesized that dim LAN (dLAN) would provoke additional and sustained body mass gain in mice on a HFD. Male mice were housed in either a standard light/dark cycle or dLAN and fed either chow or HFD. Exposure to dLAN and HFD increase weight gain, reduce glucose tolerance, and alter insulin secretion as compared with light/dark cycle and chow, respectively. The effects of dLAN and HFD appear additive, because mice exposed to dLAN that were fed HFD display the greatest increases in body mass. Exposure to both dLAN and HFD also change the timing of food intake and increase TNFalpha and MAC1 gene expression in white adipose tissue after 4 experimental weeks. Changes in MAC1 gene expression occur more rapidly due to HFD as compared with dLAN; after 5 days of experimental conditions, mice fed HFD already increase MAC1 gene expression in white adipose tissue. HFD also elevates microglia activation in the arcuate nucleus of the hypothalamus and hypothalamic TNFalpha, IL-6, and Ikbkb gene expression. Microglia activation is increased by dLAN, but only among chow-fed mice and dLAN does not affect inflammatory gene expression. These results suggest that dLAN exaggerates weight gain and peripheral inflammation associated with HFD.
Address Department of Neuroscience, Wexner Medical Center, The Ohio State University, 636 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0013-7227 ISBN Medium
Area Expedition Conference
Notes PMID:23861373 Approved no
Call Number IDA @ john @ Serial 93
Permanent link to this record
 

 
Author Arendt, J.; Middleton, B.
Title Human seasonal and circadian studies in Antarctica (Halley, 75 degrees S) Type Journal Article
Year 2018 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol
Volume 258 Issue Pages 250-258
Keywords Human Activities; Acclimatization/*physiology; Actigraphy; Adult; Antarctic Regions; Behavior/*physiology; Circadian Rhythm/*physiology; Darkness; Female; Heart Rate/physiology; Humans; Libido; Light; Male; Melatonin/blood; Photoperiod; *Seasons; Sleep/physiology; Young Adult; *Antarctica; *Circadian; *Light; *Melatonin; *Seasonal
Abstract Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75 degrees S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase delay of melatonin in winter was advanced to summer phase by a two pulse 'skeleton' bright white light treatment. Subsequently a single morning pulse of bright white light was effective with regard to circadian phase and improved daytime performance. The circadian delay evidenced by melatonin was accompanied by delayed sleep (logs and actigraphy): poor sleep is a common complaint in Polar regions. Appropriate extra artificial light, both standard white, and blue enriched, present throughout the day, effectively countered delay in sleep timing and the aMT6s rhythm. The most important factor appeared to be the maximum light experienced. Another manifestation of the winter was a decline in self-rated libido (men only on base at this time). Women on the base showed lower aspects of physical and mental health compared to men. Free-running rhythms were seen in some subjects following night shift, but were rarely found at other times, probably because this base has strongly scheduled activity and leisure time. Complete circadian adaptation during a week of night shift, also seen in a similar situation on North Sea oil rigs, led to problems readapting back to day shift in winter, compared to summer. Here again timed light treatment was used to address the problem. Sleep, alertness and waking performance are critically dependent on optimum circadian phase. Circadian desynchrony is associated with increased risk of major disease in shift workers. These studies provide some groundwork for countering/avoiding circadian desynchrony in rather extreme conditions.
Address Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK. Electronic address: b.middleton@surrey.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0016-6480 ISBN Medium
Area Expedition Conference
Notes PMID:28526480 Approved no
Call Number IDA @ john @ Serial 2248
Permanent link to this record