|   | 
Details
   web
Records
Author Mottram, V.; Middleton, B.; Williams, P.; Arendt, J.
Title The impact of bright artificial white and 'blue-enriched' light on sleep and circadian phase during the polar winter Type Journal Article
Year 2011 Publication Journal of Sleep Research Abbreviated Journal J Sleep Res
Volume 20 Issue (up) 1 Pt 2 Pages 154-161
Keywords Adult; Circadian Rhythm/*physiology; *Cold Climate; Female; Humans; *Light; Male; Medical Records; Questionnaires; Sleep/*physiology; Time Factors; blue light
Abstract Delayed sleep phase (and sometimes free-run) is common in the Antarctic winter (no natural sunlight) and optimizing the artificial light conditions is desirable. This project evaluated sleep when using 17,000 K blue-enriched lamps compared with standard white lamps (5000 K) for personal and communal illumination. Base personnel, 10 males, five females, 32.5+/-8 years took part in the study. From 24 March to 21 September 2006 light exposure alternated between 4-5-week periods of standard white (5000 K) and blue-enriched lamps (17,000 K), with a 3-week control before and after extra light. Sleep and light exposure were assessed by actigraphy and sleep diaries. General health (RAND 36-item questionnaire) and circadian phase (urinary 6-sulphatoxymelatonin rhythm) were evaluated at the end of each light condition. Direct comparison (rmanova) of blue-enriched light with white light showed that sleep onset was earlier by 19 min (P=0.022), and sleep latency tended to be shorter by 4 min (P=0.065) with blue-enriched light. Analysing all light conditions, control, blue and white, again provided evidence for greater efficiency of blue-enriched light compared with white (P<0.05), but with the best sleep timing, duration, efficiency and quality in control natural light conditions. Circadian phase was earlier on average in midwinter blue compared with midwinter white light by 45 min (P<0.05). Light condition had no influence on general health. We conclude that the use of blue-enriched light had some beneficial effects, notably earlier sleep, compared with standard white light during the polar winter.
Address British Antarctic Survey Medical Unit, Derriford Hospital, Plymouth, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-1105 ISBN Medium
Area Expedition Conference
Notes PMID:20723022 Approved no
Call Number IDA @ john @ Serial 348
Permanent link to this record
 

 
Author Filipski, E.; Subramanian, P.; Carriere, J.; Guettier, C.; Barbason, H.; Levi, F.
Title Circadian disruption accelerates liver carcinogenesis in mice Type Journal Article
Year 2009 Publication Mutation Research Abbreviated Journal Mutat Res
Volume 680 Issue (up) 1-2 Pages 95-105
Keywords Human Health; Animals; Alanine Transaminase/blood; Animals; Aspartate Aminotransferases/blood; Bile Duct Neoplasms/chemically induced/pathology; Bile Ducts, Intrahepatic/drug effects/pathology; Body Weight/drug effects; Carcinogens/administration & dosage/*toxicity; Carcinoma, Hepatocellular/chemically induced/pathology; Cholangiocarcinoma/chemically induced/pathology; Circadian Rhythm/*drug effects; Diethylnitrosamine/administration & dosage/*toxicity; Dose-Response Relationship, Drug; Injections, Intraperitoneal; Liver/drug effects/pathology; Liver Neoplasms/blood/*chemically induced/pathology; Male; Mice; Neoplasms, Multiple Primary/chemically induced/pathology; Sarcoma/chemically induced/pathology; Time Factors
Abstract BACKGROUND: The circadian timing system rhythmically controls behavior, physiology, cellular proliferation and xenobiotic metabolism over the 24-h period. The suprachiasmatic nuclei in the hypothalamus coordinate the molecular clocks in most mammalian cells through an array of circadian physiological rhythms including rest-activity, body temperature, feeding patterns and hormonal secretions. As a result, shift work that involves circadian disruption is probably carcinogenic in humans. In experimental models, chronic jet-lag (CJL) suppresses rest-activity and body temperature rhythms and accelerates growth of two transplantable tumors in mice. CJL also suppresses or significantly alters the expression rhythms of clock genes in liver and tumors. Circadian clock disruption from CJL downregulates p53 and upregulates c-Myc, thus favoring cellular proliferation. Here, we investigate the role of CJL as a tumor promoter in mice exposed to the hepatic carcinogen, diethylnitrosamine (DEN). METHODS: In experiment 1 (Exp 1), the dose-dependent carcinogenicity of chronic intraperitoneal (i.p.) administration of DEN was explored in mice. In Exp 2, mice received DEN at 10 mg/kg/day (cumulative dose: 243 mg/kg), then were randomized to remain in a photoperiodic regimen where 12 h of light alternates with 12 h of darkness (LD 12:12) or to be submitted to CJL (8-h advance of light onset every 2 days). Rest-activity and body temperature were monitored. Serum liver enzymes were determined repeatedly. Mice were sacrificed and examined for neoplastic lesions at 10 months. RESULTS: In Exp 1, DEN produced liver cancers in all the mice receiving 10 mg/kg/day. In Exp 2, mice on CJL had increased mean plasma levels of aspartate aminotransferase and more liver tumors as compared to LD mice at approximately 10 months (p = 0.005 and 0.028, respectively). The mean diameter of the largest liver tumor was twice as large in CJL vs LD mice (8.5 vs 4.4 mm, p = 0.027). In LD, a single histologic tumor type per liver was observed. In CJL, up to four different types were associated in the same liver (hepatocellular- or cholangio-carcinomas, sarcomas or mixed tumors). DEN itself markedly disrupted the circadian rhythms in rest-activity and body temperature in all the mice. DEN-induced disruption was prolonged for >or= 3 months by CJL exposure. CONCLUSIONS: The association of circadian disruption with chronic DEN exposure suggests that circadian clocks actively control the mechanisms of liver carcinogenesis in mice. Persistent circadian coordination may further be critical for slowing down and/or reverting cancer development after carcinogen exposure.
Address INSERM, U776 Rythmes Biologiques et Cancers, Hopital Paul Brousse, Villejuif F-94807, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-5107 ISBN Medium
Area Expedition Conference
Notes PMID:19833225 Approved no
Call Number LoNNe @ kagoburian @ Serial 747
Permanent link to this record
 

 
Author Fonken, L.K.; Lieberman, R.A.; Weil, Z.M.; Nelson, R.J.
Title Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice Type Journal Article
Year 2013 Publication Endocrinology Abbreviated Journal Endocrinology
Volume 154 Issue (up) 10 Pages 3817-3825
Keywords Adipose Tissue, White/*immunology/metabolism/pathology; Animals; Antigens, CD11b/biosynthesis/genetics/metabolism; Appetite Regulation/*radiation effects; Arcuate Nucleus/*immunology/metabolism/pathology; Behavior, Animal/radiation effects; Circadian Rhythm; Cytokines/biosynthesis/genetics/metabolism; Diet, High-Fat/*adverse effects; Feeding Behavior/radiation effects; Gene Expression Regulation; Glucose Intolerance/etiology/immunology/metabolism/pathology; I-kappa B Kinase/biosynthesis/genetics/metabolism; Insulin Resistance; Lighting/*adverse effects; Male; Mice; Microglia/immunology/metabolism/pathology; Nerve Tissue Proteins/biosynthesis/genetics/metabolism; Obesity/*etiology/immunology/metabolism/pathology; Random Allocation; *Weight Gain
Abstract Elevated nighttime light exposure is associated with symptoms of metabolic syndrome. In industrialized societies, high-fat diet (HFD) and exposure to light at night (LAN) often cooccur and may contribute to the increasing obesity epidemic. Thus, we hypothesized that dim LAN (dLAN) would provoke additional and sustained body mass gain in mice on a HFD. Male mice were housed in either a standard light/dark cycle or dLAN and fed either chow or HFD. Exposure to dLAN and HFD increase weight gain, reduce glucose tolerance, and alter insulin secretion as compared with light/dark cycle and chow, respectively. The effects of dLAN and HFD appear additive, because mice exposed to dLAN that were fed HFD display the greatest increases in body mass. Exposure to both dLAN and HFD also change the timing of food intake and increase TNFalpha and MAC1 gene expression in white adipose tissue after 4 experimental weeks. Changes in MAC1 gene expression occur more rapidly due to HFD as compared with dLAN; after 5 days of experimental conditions, mice fed HFD already increase MAC1 gene expression in white adipose tissue. HFD also elevates microglia activation in the arcuate nucleus of the hypothalamus and hypothalamic TNFalpha, IL-6, and Ikbkb gene expression. Microglia activation is increased by dLAN, but only among chow-fed mice and dLAN does not affect inflammatory gene expression. These results suggest that dLAN exaggerates weight gain and peripheral inflammation associated with HFD.
Address Department of Neuroscience, Wexner Medical Center, The Ohio State University, 636 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-7227 ISBN Medium
Area Expedition Conference
Notes PMID:23861373 Approved no
Call Number IDA @ john @ Serial 93
Permanent link to this record
 

 
Author Taillard, J.; Capelli, A.; Sagaspe, P.; Anund, A.; Akerstedt, T.; Philip, P.
Title In-car nocturnal blue light exposure improves motorway driving: a randomized controlled trial Type Journal Article
Year 2012 Publication PloS one Abbreviated Journal PLoS One
Volume 7 Issue (up) 10 Pages e46750
Keywords Adult; *Automobile Driving; Caffeine/pharmacology; Coffee/chemistry; Cross-Over Studies; Double-Blind Method; Fatigue/*prevention & control; Humans; Light; Male; Middle Aged; *Photic Stimulation; Placebos; Psychomotor Performance/drug effects/radiation effects; Reproducibility of Results; Sleep Deprivation; Sleep Stages/radiation effects; Wakefulness/drug effects/physiology/*radiation effects; blue light
Abstract Prolonged wakefulness greatly decreases nocturnal driving performance. The development of in-car countermeasures is a future challenge to prevent sleep-related accidents. The aim of this study is to determine whether continuous exposure to monochromatic light in the short wavelengths (blue light), placed on the dashboard, improves night-time driving performance. In this randomized, double-blind, placebo-controlled, cross-over study, 48 healthy male participants (aged 20-50 years) drove 400 km (250 miles) on motorway during night-time. They randomly and consecutively received either continuous blue light exposure (GOLite, Philips, 468 nm) during driving or 2*200 mg of caffeine or placebo of caffeine before and during the break. Treatments were separated by at least 1 week. The outcomes were number of inappropriate line crossings (ILC) and mean standard deviation of the lateral position (SDLP). Eight participants (17%) complained about dazzle during blue light exposure and were removed from the analysis. Results from the 40 remaining participants (mean age +/- SD: 32.9+/-11.1) showed that countermeasures reduced the number of inappropriate line crossings (ILC) (F(2,91.11) = 6.64; p<0.05). Indeed, ILC were lower with coffee (12.51 [95% CI, 5.86 to 19.66], p = 0.001) and blue light (14.58 [CI, 8.75 to 22.58], p = 0.003) than with placebo (26.42 [CI, 19.90 to 33.71]). Similar results were found for SDLP. Treatments did not modify the quality, quantity and timing of 3 subsequent nocturnal sleep episodes. Despite a lesser tolerance, a non-inferior efficacy of continuous nocturnal blue light exposure compared with caffeine suggests that this in-car countermeasure, used occasionally, could be used to fight nocturnal sleepiness at the wheel in blue light-tolerant drivers, whatever their age. More studies are needed to determine the reproducibility of data and to verify if it can be generalized to women. Trial registration: ClinicalTrials.gov NCT01070004.
Address University of Bordeaux, Sommeil, Attention et Neuropsychiatrie, USR 3413, Bordeaux, France. jack.taillard@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23094031; PMCID:PMC3477137 Approved no
Call Number IDA @ john @ Serial 347
Permanent link to this record
 

 
Author Vollmer, C.; Randler, C.; Di Milia, L.
Title Further evidence for the influence of photoperiod at birth on chronotype in a sample of German adolescents Type Journal Article
Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 29 Issue (up) 10 Pages 1345-1351
Keywords Human Health; Adolescent; Child; Circadian Rhythm/*physiology; Female; Germany; Humans; Male; Parturition/*physiology; *Photoperiod; Puberty/physiology; *Seasons; Sleep/*physiology
Abstract Individuals differ in their circadian preferences (chronotype). There is evidence in the literature to support a season-of-birth effect on chronotype but the evidence is not convincing. In part, the relationship is obscured by a number of methodological differences between studies, including the measures used to define morningness, the way in which the seasons were categorized, and the sample size. This study adds to the literature in several ways. First, we adopt a new approach to categorizing the photoperiod rather than the calendar season; thus we prefer to use the term photoperiod at birth. Second, we used two measures of morningness. Third, we used a large and homogeneous German sample. The results show that adolescents (n = 2905) born during the increasing photoperiod (Feb-Apr) had a significantly later midpoint of sleep (MSFsc) than those born during the decreasing photoperiod (Aug-Oct). A similar pattern was found for the Composite Scale of Morningness (CSM). Furthermore, both measures of chronotype demonstrated a significant quadratic function over a 1-yr cycle. When looking at each of six consecutive years separately, the Composite Scale of Morningness suggests a cosine rhythm linked to increasing and decreasing photoperiods that becomes weaker in amplitude with increasing age. Despite the strengths in our study, the effect of photoperiod at birth on chronotype remains small. Future studies may require larger sample sizes, may need to explore how neonatal light exposure modulates chronotype, and may need to track how puberty and adolescent lifestyle habits mask the photoperiod effect.
Address Department of Biology, University of Education Heidelberg, Im Neuenheimer Feld 561-2, Heidelberg, Germany. vollmer@ph-heidelberg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:23130997 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 517
Permanent link to this record