|   | 
Details
   web
Records
Author Grundy, A.; Richardson, H.; Burstyn, I.; Lohrisch, C.; SenGupta, S.K.; Lai, A.S.; Lee, D.; Spinelli, J.J.; Aronson, K.J.
Title Increased risk of breast cancer associated with long-term shift work in Canada Type Journal Article
Year 2013 Publication Occupational and Environmental Medicine Abbreviated Journal Occup Environ Med
Volume 70 Issue (up) 12 Pages 831-838
Keywords Human Health; Adult; Aged; Aged, 80 and over; Breast Neoplasms/epidemiology/*etiology/metabolism; British Columbia/epidemiology; Case-Control Studies; Female; Humans; Menopause; Middle Aged; Occupational Diseases/*epidemiology; Ontario/epidemiology; Receptors, Estrogen/metabolism; Receptors, Progesterone/metabolism; Risk Factors; Tumor Markers, Biological/metabolism; Work Schedule Tolerance/*physiology; Young Adult
Abstract OBJECTIVES: Long-term night work has been suggested as a risk factor for breast cancer; however, additional studies with more comprehensive methods of exposure assessment to capture the diversity of shift patterns are needed. As well, few previous studies have considered the role of hormone receptor subtype. METHODS: Relationships between night shift work and breast cancer were examined among 1134 breast cancer cases and 1179 controls, frequency-matched by age in Vancouver, British Columbia, and Kingston, Ontario. Self-reported lifetime occupational histories were assessed for night shift work, and hormone receptor status obtained from tumour pathology records. RESULTS: With approximately one-third of cases and controls ever employed in night shift work, associations with duration demonstrated no relationship between either 0-14 or 15-29 years, while an association was apparent for >/=30 years (OR=2.21, 95% CI 1.14 to 4.31). This association with long-term night shift work is robust to alternative definitions of prolonged shift work, with similar results for both health and non-health care workers. CONCLUSIONS: Long-term night shift work in a diverse mix of occupations is associated with increased breast cancer risk and not limited to nurses, as in most previous studies.
Address Department of Public Health Sciences and Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1351-0711 ISBN Medium
Area Expedition Conference
Notes PMID:23817841 Approved no
Call Number LoNNe @ kagoburian @ Serial 757
Permanent link to this record
 

 
Author Spivey, A.
Title Light at night and breast cancer risk worldwide Type
Year 2010 Publication Environmental Health Perspectives Abbreviated Journal Environ Health Perspect
Volume 118 Issue (up) 12 Pages a525
Keywords Human Health; Breast Neoplasms/epidemiology/*etiology/prevention & control; Female; Humans; Lighting/*adverse effects; Male; Prostatic Neoplasms/epidemiology/*etiology/prevention & control; Risk Factors
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-6765 ISBN Medium
Area Expedition Conference
Notes PMID:21123149; PMCID:PMC3002207 Approved no
Call Number LoNNe @ kagoburian @ Serial 813
Permanent link to this record
 

 
Author Cajochen, C.; Altanay-Ekici, S.; Munch, M.; Frey, S.; Knoblauch, V.; Wirz-Justice, A.
Title Evidence that the lunar cycle influences human sleep Type Journal Article
Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 23 Issue (up) 15 Pages 1485-1488
Keywords Adult; Aged; Cross-Sectional Studies; Electroencephalography; Female; Humans; Hydrocortisone/analysis/metabolism; Male; Melatonin/analysis/metabolism; Middle Aged; Moon; Nontherapeutic Human Experimentation; Periodicity; Saliva/metabolism; Sleep/*physiology; Sleep Stages/physiology; Young Adult
Abstract Endogenous rhythms of circalunar periodicity ( approximately 29.5 days) and their underlying molecular and genetic basis have been demonstrated in a number of marine species [1, 2]. In contrast, there is a great deal of folklore but no consistent association of moon cycles with human physiology and behavior [3]. Here we show that subjective and objective measures of sleep vary according to lunar phase and thus may reflect circalunar rhythmicity in humans. To exclude confounders such as increased light at night or the potential bias in perception regarding a lunar influence on sleep, we retrospectively analyzed sleep structure, electroencephalographic activity during non-rapid-eye-movement (NREM) sleep, and secretion of the hormones melatonin and cortisol found under stringently controlled laboratory conditions in a cross-sectional setting. At no point during and after the study were volunteers or investigators aware of the a posteriori analysis relative to lunar phase. We found that around full moon, electroencephalogram (EEG) delta activity during NREM sleep, an indicator of deep sleep, decreased by 30%, time to fall asleep increased by 5 min, and EEG-assessed total sleep duration was reduced by 20 min. These changes were associated with a decrease in subjective sleep quality and diminished endogenous melatonin levels. This is the first reliable evidence that a lunar rhythm can modulate sleep structure in humans when measured under the highly controlled conditions of a circadian laboratory study protocol without time cues.
Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4012 Basel, Switzerland. christian.cajochen@upkbs.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:23891110 Approved no
Call Number IDA @ john @ Serial 140
Permanent link to this record
 

 
Author Kantermann, T.
Title Circadian biology: sleep-styles shaped by light-styles Type Journal Article
Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 23 Issue (up) 16 Pages R689-90
Keywords Human Health; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight
Abstract Light and darkness are the main time cues synchronising all biological clocks to the external environment. This little understood evolutionary phenomenon is called circadian entrainment. A new study illuminates our understanding of how modern light- and lifestyles compromise circadian entrainment and impact our biological clocks.
Address Chronobiology – Centre for Behaviour and Neurosciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. thomas@kantermann.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:23968925 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 501
Permanent link to this record
 

 
Author Wright, K.P.J.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D.
Title Entrainment of the human circadian clock to the natural light-dark cycle Type Journal Article
Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 23 Issue (up) 16 Pages 1554-1558
Keywords Human Health; Adult; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight; Young Adult; Circadian Rhythm
Abstract The electric light is one of the most important human inventions. Sleep and other daily rhythms in physiology and behavior, however, evolved in the natural light-dark cycle [1], and electrical lighting is thought to have disrupted these rhythms. Yet how much the age of electrical lighting has altered the human circadian clock is unknown. Here we show that electrical lighting and the constructed environment is associated with reduced exposure to sunlight during the day, increased light exposure after sunset, and a delayed timing of the circadian clock as compared to a summer natural 14 hr 40 min:9 hr 20 min light-dark cycle camping. Furthermore, we find that after exposure to only natural light, the internal circadian clock synchronizes to solar time such that the beginning of the internal biological night occurs at sunset and the end of the internal biological night occurs before wake time just after sunrise. In addition, we find that later chronotypes show larger circadian advances when exposed to only natural light, making the timing of their internal clocks in relation to the light-dark cycle more similar to earlier chronotypes. These findings have important implications for understanding how modern light exposure patterns contribute to late sleep schedules and may disrupt sleep and circadian clocks.
Address Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309-0354, USA. kenneth.wright@colorado.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:23910656; PMCID:PMC4020279 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 505
Permanent link to this record